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Grant Title: SNAP-THROUGH AND CONTINUATION 
 
Summary: 
 
This project has resulted in a solid improvement to the state of the art knowledge in 
nonlinear structural dynamics. The new insight gained, and the types of structural 
components analyzed, are directly applicable to the structural mechanics objectives of the 
Air Force. In order to fully provide a test-bed for future hypersonics vehicular analysis 
(in particular) it is crucial to understand the nonlinear dynamical behavior of slender 
structural elements in extreme environments. 
 
The technical papers that form the appendices of this final report detail the achievements 
that have been made on both the experimental and computational fronts of this project. 
Both PI’s have spent extended periods at the AFRL in Dayton, Ohio interacting with Air 
Force personnel in this area (including during the summers of 2009, 2010 and 2011). A 
number of research assistants were supported on this project. Both PI’s and the two of the 
graduate students spent time at AFRL in Dayton in the. 
 
The Context of the Research: 
 
In order to meet ever-increasing performance demands modern aircraft are being 
designed lighter than ever before. This weight efficiency usually comes at the expense of 
structural mass, leading to more slender structural components. Slender structures are 
however susceptible to vibration and instabilities, particularly buckling, which can occur 
well before strength limits are reached. 
 
Snap-through buckling is a particular type of buckling where a structure snaps from one 
state to another remote state. Such large deflections pose a hazard since they can cause 
fatigue, and in the context of hypersonics, sonic fatigue due to boundary layer effects. 
Postbuckled snap-through occurs in axially loaded structures, where a structure snaps 
between the two (often) symmetric buckled states under some perturbation. 
 
The two main thrusts of this research has concerned low-order experimental models, and 
high-order computational. Although the approaches and scale of these system approaches 



are quite different, the resulting research discoveries illustrate the similarity in dynamic 
phenomena, and indeed, these approaches have mutually informed each other. 
 
Summary of Experimental Results: 
 
Figure 1(a) shows a photograph image of the experimental test-bed, built by the PI Prof. 
Virgin and his students at Duke University. A schematic of this system is shown in part 
(b). When this system is laterally excited, it is capable of exhibiting a sensitivity to initial 
conditions. Part (c) shows how the system can be randomly perturbed about, and 
between, various co-existing behaviors. That is, the system ‘snaps’ between various 
forms of behavior, and this of course is exactly the type of behavior that has such striking 
implications for sonic fatigue. 
 
 

 
 

 
 

Figure 1: The link model, (a) the system as constructed in the lab, (b) a schematic, (c) a 
time series in which the system is perturbed between co-existing states. 

 
More details of the types of dynamic behavior relating to this system can be found in 
references [1-4]. 



Summary of Numerical Results 
 
A sophisticated finite element analysis and simulations of snap-through behavior was 
conducted by Prof. Stanciulescu (the subcontractor) and her students at Rice University. 
In addition to the mechanical instability of interest progress was also made on accounting 
for the coupling between mechanical and thermal loading. 
 
As an example, Figure 2(a) shows through an indirect evaluation, a lower bound on the 
(snap-through) temperature that can be identified for a given shallow arch. This is the 
continuous analog of the discrete system discussed in the experimental section. Below 
these temperatures the arch will not experience snap-through. A direct method for tracing 
the stability boundary of coupled systems was also formulated and implemented. It can 
handle any type of critical points and also identifies mode changes, with a typical set of 
results displayed in Figure 2(b). 
 
!

     
 
 
Figure 2: Sample finite element results, (a) Safe snap-through boundaries for a shallow 

arch including thermal loading, (c) Critical loads under various conditions. 
 
Summary of Experimental/Numerical Correlation 
 
One of the original goals of this research project was to utilize parallel approaches to 
experimental and numerical studies. A typical example is shown in Figure 3. The lower 
data (plotted in black) shows how the response of the experimental system depends 
strongly on the forcing parameters. The response of the system is monitored in terms of 
the number of ‘snaps’ per forcing cycle. For example, when the system is forced at a 
fixed amplitude, at a frequency Ω of 4 Hz, no snapping behavior occurs and the system 
simply oscillates (with small amplitude) about one of the (buckled) equilibria. Over the 
forcing frequency range Ω = 4.4 to 6.2 the system may either not snap-through, or snap-
through periodically (hence the ‘0’ or ‘2’ label). However, over the range Ω = 6.3 to 9 
Hz, 

!



The system exhibit very complex (sometimes chaotic) behavior. Some sample time series 
are shown as insets in this figure. The upper part of the diagram shows the corresponding 
numerical result. The correlation is remarkable. 

 
 
 

 
Figure 3: A comparison between experimental and numerical results. 

 
Summary: 
 
The research achieved in this program has resulted in a range of innovative approaches in 
both the experimental and computational realms. This work provides a strong foundation 
on which to build more sophisticated studies based on more realistic (panel and shell-like 
structures, including composites). The list of publications from this research are given 
below, and be consulted for further details. 
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ABSTRACT

Geometrically nonlinear structures often possess multiple equilibrium configurations. Under extreme condi-

tions of excitation it is possible for these structures to exhibit oscillations about and between these co-existing

configurations. This behavior may have serious implications for fatigue in the context of aircraft surface panels.

Snap-through is a name often given to sudden changes in dynamic behavior associated with mechanical instability

(buckling). This is an often encountered problem in hypersonic vehicles in which severe thermal loading and acous-

tic excitation conspire to create an especially hostile environment for structural elements. In this paper, a simple

link model is used, experimentally and numerically, to investigate the mechanisms of snap-through buckling from a

phenomenological standpoint.



1 Introduction

In order to meet ever increasing performance demands modern aircraft are being designed lighter than ever before. This

weight efficiency usually leads to more slender structural components. Slender structures are susceptible to instabilities,

particularly buckling, which can occur well before strength limits are reached. The nonlinear vibration of buckled structures

may also lead to a large variety of chaotic and periodic oscillations. We are primarily interested in the circumstances under

which a curved structure is forced to its inverted configuration, as shown in Fig. 1(a) and (b).

Snap-through buckling is a particular type of instability where the structure snaps from one state to another (remote)

state. Such large deflections pose a hazard since they can exacerbate fatigue [1, 2]. The two primary types of snap-through

buckling, post buckled/bifurcated snap-through and limit point snap-through, are shown in parts (c) and (d) of Fig. 1 [3].

Limit point buckling occurs in structures where the stiffness decreases (with increasing loading) to a vanishing point,

i.e., a horizontal tangency in the force-deflection relation (as shown in Fig. 1(c)). At the limit point the structure jumps

to the remaining stable equilibrium. At loads below the limit point the structure may also snap-through under external

perturbations. Postbuckled snap-through occurs in axially loaded structures, where a structure snaps between the two (often)

symmetric buckled states under some perturbation, for example, from point δe to δ∗e in Fig. 1(d). Postbuckled snap-through

typically occurs after pitchfork buckling; and it often requires that the structure first be loaded to a buckled configuration (as

shown in Fig. 1(d)). Related behavior can also occur in aircraft surface panels that may buckle due to thermal loading, [4–6].

When a structure with an underlying snap-through static behavior is subjected to excitation, then highly nonlinear oscil-

lations are possible. In order to gain phenomenological insight into this type of response and enable relatively unambiguous

experimental verification we introduce a very simple single degree of freedom (SDOF) discrete structural system (Fig. 2).

This system, for a certain induced pre-stress through the axial spring 2ks, and a(t) = constant (i.e., the actuator is held in a

fixed position), possesses two symmetric static equilibria, θ=±θe. Furthermore, when the system is subject to ’lateral’ exci-

tation a(t), we observe the possibility of complicated behavior involving motion that is heavily influenced by the locations of

the underlying equilibria. A key aspect of this form of dynamic buckling is the existence of an unstable equilibrium between

the stable states. These unstable equilibria define the basins of attraction for the stable states. Hence, the energies of the stable

and unstable states may be useful for distinguishing between trajectories that snap from those that do not. The static equilib-

ria, both stable and unstable, are therefore of great importance in studying the systems’ forced dynamics. This system will

be scrutinized using classical analysis techniques as well as experimental verification to shed light on the issue of dynamic

snap-through in the larger context of aircraft structural components. Later work will focus on the multi-degree-of-freedom

system, in which mode shapes, asymmetric behavior, etc. will be important features.

Single degree of freedom systems, particularly ones with Duffing-type potential wells, are well represented in the lit-

erature. An excellent review of the behavior of the forced Duffing oscillator is available in [7, 8]. The route to potential

well escape (i.e., snap-through for a mechanical system) is studied in [9] using Melnikov theory. Melnikov theory is also

used in [10] to give a criterion for the existence of chaos in quasi-periodically forced Duffing oscillator. An SDOF structure

with an underlying Duffing potential well was studied in [11]. This paper discusses the use of homoclinic orbits as the

bifurcation indicator in an unforced system, and bifurcation to and from chaos with respect to harmonic forcing parameters.



A (modified) Duffing oscillator was studied numerically in [12, 13]. In the vicinity of basin boundaries, small changes in

initial conditions, parameters, or indeed in the numerical algorithm used, may lead to different attractors. A study of the

bifurcations in forcing parameter space, similar to the goal of this research, is done in [14]. This work produced approximate

analytical boundaries separating bounded from unbounded motion.

2 Experimental Setup

Shallow arches typically snap-through in a symmetric mode shape [15–19], and thus a SDOF link arch may be used to

qualitatively model this behavior. For deeper arches, i.e., arches with a higher rise-to-span ratio, an asymmetric mode of

buckling is typically encountered. Figure 3 is a photograph of the experimental SDOF link model tested. The two link arms

were both carbon fiber and had a length of 32.4 cm and a mass of 41g. The center joint had a mass of 166g and the slider

had a mass of 1260g. Note that the system was set up horizontally on a test bed and hence force due to gravity was out of

the plane of the system dynamics.

The two axial springs are an essential component of the structure and result in the underlying multivalued potential

energy surface which mimics a shallow arch. As a practical consideration it was decided to use two opposing mutually pre-

tensioned springs (each with ks = 74 N/m) to avoid inducing compressive forces, which would of course buckle the springs.

The two transverse springs connected to the center joint provided a transmitted force to the system via the displacement

of the opposite end of the active spring, ka. The displacement was provided by a Scotch-yoke mechanism moving with an

approximately sinusoidal motion [8]. The second (anchor) spring, kp, ensured a pre-tension in the active spring. The active

and anchor springs had stiffnesses of ka = 38 N/m and kp = 23 N/m respectively. The control parameters for the system were

the Scotch-yoke amplitude and frequency which equate to the forcing amplitude and forcing frequency of the system.

The most natural generalized coordinate for this system is the angle of the link arm on the non-sliding side of the

structure. This angle, θ, was measured using a high speed camera (Prosilica GC640). The arm position, and hence the angle,

was obtained by locating a small white target on the link arm (see Fig. 3) by its contrast with the background using LabVIEW

software. This process was done in real-time for each frame taken by the camera, providing a time series of the arm angle.

Experimental results are discussed later in sections 4 and 5.

3 Modeling

A numerical model was developed to compare with the experimental results. Referring back to Fig. 2, we model the

discrete dynamic system using an energy approach. Here, mb is the mass of the link arms, mc is the mass of the center joint

(assumed to be a point mass), ms is the mass of the slider assembly and joint, L is link length, ks are the lateral structural

spring stiffnesses, ka is the active spring stiffness, kp is the anchor spring stiffness, and θ is the angle of the link arm on

the non-sliding side. The spring masses were considered negligible. The displacement at the end of the active spring a(t)

is transmitted as a force through the active spring to provide the system forcing. The angle θ0 is the unforced equilibrium

angle, i.e., the angle of the stable equilibrium with the forcing in the neutral position. Once again the effect of gravity is

ignored in the analysis since the experimental system was laying flat. The kinetic and potential energies, along with the



energy dissipation of the system are given by

T (θ, θ̇, t) =
{

1
2
(

mc+
1
3mb

)

L2+ 1
2msx′s(θ)

2

+ 1
6mb

[

x′c(θ)
2+ x′c(θ)x′s(θ)+ x′s(θ)

2+ y′s(θ)
2
]}

θ̇2,

V (θ, t;θ1) = ks[xs(θ)− xs(θ1)]2+ 1
2ka[a(t)− yc(θ)]2+ 1

2kpyc(θ)
2,

F(θ, θ̇, t) = 1
2β [ẋs(θ)]

2 = 1
2β

[

x′s(θ)θ̇
]2
,

(1)

where xc(θ) = Lcos(θ), yc(θ) = Lsin(θ), xs(θ) = 2Lcos(θ). The masses of the springs were small and their contribution to

the kinetic energy was neglected. The slider mechanism was by far the largest contributor to the damping of the experimental

system; therefore the dissipation function F was set to be a function of ẋs only. The angle θ1 is the angle at which the

two lateral structural springs were in equilibrium. This is the angle at which the potential energy of these two springs is

at a minimum, i.e., the stable equilibrium of the system if the transverse (forcing) springs were removed. However the

equilibrium states observed experimentally are at the stationary points of the total potential energy [20]. The two angles θ0

and θ1 are related by the expression

∂
∂θ

[

V
(

θ;θ1
)]

θ=θ0
= 0. (2)

Note that the two forcing springs, ka and kp, were set to be in equilibrium for θ= 0.

The potential and kinetic energy equations may be substituted into the Euler-Lagrange equation [21]

d
dt

(

∂(T −V)
∂θ̇

)

−
∂T
∂θ

+
∂V
∂θ

+
∂F
∂θ̇

= 0, (3)

to yield the equation of motion of the system:

[

mc+ 2
3mb+ 2(mb+ 2ms)sin2 θ

]

θ̈+(mb+ 2ms)sin(2θ)θ̇2+ 4βθ̇sin2 θ

+8ks (cosθ1− cosθ) sinθ+ 1
2 (ka+ kp) sin2θ− (ka/L)cosθ)a(t) = 0.

(4)

The damping coefficient β (Kg/s) was determined by fitting a simulated (using fourth-order Runge-Kutta time stepping

of Eq. (4) with Δt = 0.001 s) free decay response with the experimental response. In order to check the numerical stability of

the Runge-Kutta routine it was also compared with simulations done using the NDSolve function available in Mathematica,



with excellent agreement. Figure 4 (a) shows this comparison between simulated and experimental time series (for θ0= 26.0o

and θ1 = 36.2o). We note that the agreement is good, despite the large-amplitude, snap-through characteristic of the free

decay. Parts (b) and (c) of this figure show the sensitivity of the simulation error norm (calculated as the average of the

absolute difference between simulated and experimental time series up to t = 6 s) as a function of β. Part (b) is for the

large amplitude experimental data points shown in part (a). The large jumps in the error occur because as the damping is

changed the system will snap-through either too often (damping too low), or not enough (damping too high). The lower

error region near β = 0.65 occurs because the system in fact snaps-through an extra two times and therefore returns to the

same side as the experimental data so the error is actually lower than for higher values of β where only one extra snap

event occurs. This leads to a smaller error norm even though it is less accurate. Note that although the system seems to be

very sensitive to the damping coefficient, this plot corresponds to a single experimental time series. Finally part (c) shows

a similar sensitivity study done using a small non-snapping free decay, which shows a clear minimum. Parts (a) and (b)

hint that an optimal damping is approximately β = 1.2, whereas part (c), for the small amplitude decaying oscillation, has

a optimal value closer to β = 1.3. This indicates that the system damping is slightly larger for small oscillations. However,

since the results to be shown tended to be dominated by large amplitude oscillations the value β= 1.2 was used throughout.

The model could be refined by including the effects of Coulomb damping such as in [22], where Coulomb friction is shown

to induce follower forces on the system. However, due to the overall excellent agreement between the experimental and

numerical results shown later, it was decided that the viscous friction used in the model is accurately portraying the system

dynamics in general, including energy dissipation.

4 Equilibria and Stability

The static force-displacement relationship may be obtained by finding the static force (or in this case static displacement

a(t) → ae) and angle θe for which the potential energy of the system exhibits a stationary point. The force-displacement

relationship is given by

ae =
L
ka

[

ka+ kp+ 8ks
(

cosθ1
cosθe

− 1
)]

sinθe. (5)

According to the theorem of minimum potential energy the stability of the equilibria are given by the sign of the second

derivative of the potential energy function [20]. A positive (negative) second derivative implies a minimum (maximum)

potential and hence stable (unstable) equilibrium. An equivalent approach is to investigate the local natural frequency of the

system for small oscillations about the equilibria under the static load being considered [3, 23]. This method is preferred

because unlike potential energy it is easy to directly measure the response frequency of an experimental system. The natural

frequency may also be of interest in its own right. The sign of ω2 determines stability, i.e., if ω2 > 0 then disturbances do

not grow in time. Linearizing the equation of motion about a static equilibrium position θ= θe under a static load a(t) = ae

produces the equation of a simple harmonic oscillator from which the undamped natural frequency is easily determined to



be

ω02 =
8ksL2 cosθ1 cosθe+(ka+ kp− 8ks)L2 cos2θe+ kaLae sinθe

1
2
(

mc+ 1
3mb

)

L2+ 1
3mbL2+ 2(mb+ 2ms)L2 sin2 θe

, (6)

where the numerator is the second derivative of the potential energy. Given that the denominator of equation (6), i.e., the

inertia, is positive definite, this result is clearly in agreement with the theorem of minimum potential energy.

Figure 5 shows the relationship between the force (static displacement of the actuator ae), displacement, and local natural

frequency for both the experimental system and the analytical model (for θ0 = 26.0o and θ1 = 36.2o). The experimental

response frequency is necessarily the damped natural frequency, whereas in the analytical result is the undamped natural

frequency. However, because the damping is relatively small these two values are still very close. For the experimental

results there are no data points in the unstable region given that these equilibria cannot be observed. However the agreement

is excellent in the stable region.

The static equilibria of dynamical systems, and underlying potential energy, give much insight into the dynamic re-

sponse, i.e., they act as an organizing framework for the nonlinear behavior. If the system is subject to periodic excitation,

they also influence large amplitude snap-through oscillations and highly nonlinear global behavior. This will be considered

in the next section.

5 Dynamic Response

The forced dynamic response of the system was simulated by applying a fourth-order Runge-Kutta time stepping scheme

on Eq. (4) with a(t) = AsinΩt. Figure 6 shows some typical periodic responses from the system in Fig. 5 (numerical

simulation in parts (a) and (b) and experimental in parts (c) and (d)). Each time series was produced with a forcing amplitude

of A = 6.25 cm (compare with the Asnap ≈ 8.21 cm), however parts (a) and (c) corresponded to a forcing frequency of

Ω = 4.40 rad/s while parts (b) and (d) corresponded to Ω = 3.36 rad/s. The transmissibility of the forcing mechanism

effectively translates to a moving restoring force, but superimposing the phase trajectories in this way gives a clear indication

of whether the system is oscillating about, or snapping between, the two sides of the system. It is interesting that there is

better agreement between the numerical and experimental results for the large snap-through motion in Fig. 6(b) and (d) than

for the small non snap-through motion in (a) and (c). It is likely that this is due to some nonlinear damping effects that were

not included in the model, particularly Coulomb damping (already discussed earlier), which has a more pronounced effect

on slower motions.

Figure 7 shows several time series from simulation (a-d) and experiment (e-h), this time for a more shallow angle

θ0 = 15.0o (θ1 = 29.9o) and A= 1.10 cm (compare with Asnap ≈ 1.56 cm). The relatively simple ’period-one (P1)’, periodic

responses shown in parts (a,b,e,f) correspond to a forcing frequency ofΩ= 4.9 rad/s, i.e., they co-exist at this set of parameter

values, and which attractor occurs depends on the initial conditions. This aspect of the behavior will be revisited a little later.

The non-simple but still periodic responses shown in parts (c and g) are not quite the same. The numerical result shown



in part (c) occurred for Ω= 7.6 rad/s and can be characterized as a ’period-four (P4)’ oscillation, i.e., it repeats itself every

four forcing cycles. The experimental result shown in part (g) is for a slightly different forcing frequency (Ω = 7.9 rad/s)

and is in fact a P5 oscillation. The chaotic behavior for the numerical result (part d) corresponds to Ω = 7.8 rad/s and the

experimental result (part h) corresponds to Ω = 8.1 rad/s. These values are very close to those used to generate the time

series in parts (c and g), thus suggesting a parameter sensitivity in this range.

The frequency content of these time series (see Fig. 8 for the more interesting time series) can be quite useful in

assessing certain qualitative features of the dynamics. They can also assist in determining whether the system is exhibiting

snap-through oscillations, since it is typically somewhat difficult to consistently distinguish between trajectories that snap-

through from those that do not. The broadband nature of the discrete Fourier transform (DFT) of a time series is of course a

well-established signature of chaos.

Figure 9 contains a ’bifurcation’ diagram of snap-through behavior as a function of forcing frequency with (θ0 = 15.0o,

A= 1.10 cm). Parts (a) and (b) show the number of snap-through events per forcing cycle from simulation and experimental

results, respectively. A snap-through event was considered to be any crossing of the state θ = 0. This definition of snap-

through works relatively well for the system because the unstable equilibria does not change significantly with the forcing.

Each data point in part (a) indicates the result of one simulation with the snap-through events per forcing cycle being

averaged over 1000 forcing cycles after the transients were given sufficient time to decay. The plot was created by running

10 simulations with random initial conditions for 100 forcing frequencies to capture co-existing attractors. The experimental

data points were instead obtained by a performing a moving average of the number snap-through events per forcing cycle on

a sweep-up followed by a sweep-down through forcing frequency. The sweep-up and -down primarily differ in the region

below Ω = 6.2 rad/s where the sweep-up did not snap-through and the sweep-down did. The responses that snap-through

twice per forcing cycle indicate a snap-through in-phase with the forcing, i.e., P1 snap-through (see Fig. 7(b and f) for

example time series). The responses with intermediate occurrences of snap-through indicate responses with occasional, or

sporadic, snap-through, which may occur in higher-period periodic behavior (Fig. 7(c and g)) and chaotic behavior (Fig. 7(d

and h)). Figure 9(c) shows the likelihood (via simulation only) of the system response converging to one of the three

competing types of behavior seen it parts (a) and (b), where green corresponds to no snap-through, red corresponds to

P1 snap-through, and blue is higher-periodic or chaotic (less frequent) snap-through. The likelihood was measured by

running 100 simulations at random initial conditions at each frequency. This method may be more difficult to apply to

higher dimensional systems as the separatrices are typically more complex and may be more dependent on the system

forcing. However, in this relatively simple system it gives a straightforward interpretation of a potentially onerous event

(snap-through) and thus useful data to inform practical issues including life-time fatigue predictions.

Another approach might be to observe some kind of energy measure of a given response. For a system to snap-through

it is postulated that the external forcing must add a sufficient amount of energy to the system. Figure 10 shows the average

kinetic energy over a span of forcing cycles against the forcing frequency for the same parameters as Fig. 9. The experimental

data points were obtained by first sweeping slowly up, then down, through forcing frequency. The agreement between the

experimental and numerical results is excellent, with only a slight horizontal shift in the data points.



One anticipates that the average kinetic energy of a system would be much larger for trajectories that traverse across

the unstable equilibria than for those that oscillate about a single equilibria; however this detection is made more difficult

by responses that only occasionally snap-through. This typically occurs with very high periodic, or more often, chaotic

responses, which prevail for much of the right half of the energy plots. This makes the determination of chaos another

important aspect of the analysis, especially since it is known that single well chaos is relatively rare [24].

The standard method of identifying chaos is to determine the Lyapunov spectrum of the system. Lyapunov exponents

(LE) are however relatively difficult to determine from experimental data [25]. Figure 11(a) shows the LE obtained from the

simulation of equation (4) (using the method in [26]) against forcing frequency. The data points were produced by running

10 simulations for different random initial conditions at 100 frequencies to make it possible to capture co-existing attractors.

When comparing with Fig. 10 it appears that most of the chaotic responses of the system occur for snap-through trajectories.

An alternative approach is introduced in [27], whereby the number of distinct frequency spikes (peaks on the DFT,

above a certain threshold) of a dynamical system are plotted against the parameter used for the simulation/experiment. There

is typically a clear dichotomy in the number of peaks for a chaotic response with a broadband spectrum and a non-chaotic

response with a finite number of peaks, making identification of chaos possible. Figure 11(b) shows the identification of

chaos using this peak count method. In these results 10 simulations with randomly generated initial conditions were run

at 100 forcing frequencies. It is confirmed that the chaotic responses are almost entirely within the region of high energy

response.

An interesting ’second-order’ feature in these plots is an assessment of how chaotic a signal might be. Two sample time

series (indicated by the vertical dashed red lines) are also shown in Fig. 11(c) and (d). Part (d) corresponding to Ω = 7.6

rad/s shows a slightly stronger periodicity than the time series shown in part (c) (Ω = 7.0 rad/s): the second half of the

time series appears nearly periodic, this short term periodicity is ubiquitous throughout the time series as the trajectory

appears to spend more time oscillating about (rather than between) the underlying static equilibria. When subject to the

LE algorithm this periodic signature results in a slightly less positive LE, and there are a few less spectral peaks occurring

above the threshold. It is not uncommon for a chaotic trajectory to spend periods of time in a near-periodic state (a typical

chaotic attractor has embedded within it many unstable periodic orbits). It was also just mentioned that in certain (relatively

small) regimes of forcing frequency co-existing oscillations occur. In order to illuminate this feature, Fig. 11(e) shows the

outcome of 100 simulations using randomly generated initial conditions, in which the percentage of numerical simulations

that lead to chaos is charted for both the LE (dashed black line) and the peak-count (solid green line) approaches. Clearly,

both criteria are effective in distinguishing chaotic from non-chaotic motion. Outside of this range of forcing frequencies the

behavior was typically non-chaotic, although co-existing attractors could still exist, and the periodic motion could be either

small-amplitude (contained within the vicinity of an equilibrium), or relatively large-amplitude (cross-well) motion.

The same approach was also applied to the experimental system. Figure 12 shows bifurcation diagrams, based on 18

tests, in terms of chaotic vs. non-chaotic behavior. The computation of the largest Lyapunov exponent (λ) is based on a

standard algorithm [28] in which a time series is assessed in terms of the exponential rate at which nearest neighbors tend

to evolve in time. This can be a sensitive undertaking, for example, part (a), for Ω = 6.518, and (b), for Ω = 8.140 of



Fig. 12 show how the approach requires a linear fit. This is by no means straightforward. The red dashed lines in (a) and (b)

show an approximately exponential divergence (the y-axis is a log-scale) for short time evolutions. However, the response

in part (a) is characterized by a very small slope and corresponds to a periodic oscillation, whereas the case in part (b) is

more convincingly positive and corresponds to a chaotic oscillation. Part (c) of this figure summarizes this behavior, and

part (d) shows the equivalent results based on the peak count criterion. The red dashed lines in these parts show the specific

frequencies at which the snapshots were taken for parts (a) and (b). The peak counts approach appears to be more robust and

easier to apply than the conventional LE approach. The agreement with the numerical results is quite good. The bifurcations

are slightly shifted, however the progression and even some of the periodic windows are still captured.

6 Conclusions

Snap-through buckling is investigated on a SDOF system. Some aspects of the underlying force-deflection and free

vibration behavior of the system are described. Under the action of periodic excitation, the focus of interest shifts from

equilibria to oscillatory behavior. In a broad sense, the behavior of the forced system can be divided into regimes of either

small-amplitude or large-amplitude behavior. This latter response can be associated with snap-through behavior - an often

highly undesirable behavior in many structural applications. Alternatively, the behavior can be divided into regimes of

chaotic and non-chaotic behavior. Chaos is commonly associated with snap-through behavior but they are not necessarily

the same thing. A promising method of distinguishing between small- and large-amplitude responses based on average total

energy is introduced and applied to the system with good agreement between experimental results and the numerical model.

Another method based on distinguishing between chaotic and non-chaotic responses is also proposed. In general, this work

provide a useful overview of how snap-through behavior depends on the forcing parameters.
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Figure Captions:

1. A typical curved panel, and two schematic scenarios in which such a system might exhibit a snap-through event in its

force-displacement relationship. (a) pre-snap, (b) post-snap, (c) limit point buckling, (d) pitchfork bifurcation.

2. A single degree of freedom (SDOF) link model.

3. (a) Photograph of experimental setup, (b) the low-friction pin joint, (c) the Scotch-yoke forcing mechanism.

4. Identification of damping parameter β (Kg/s). (a) A typical nonlinear free decay; the points are experimental data,

and the continuous line represents the numerical integration of equation (4) with β = 1.2. (b) Normalized average error vs.

β for the large amplitude time series (in part (a)). (c) Normalized average error vs. β for a small amplitude time series.

5. Free response characteristics. (a) force vs. natural frequency (squared), (b) force vs. deflection, (c) natural frequency

(squared) vs. deflection. The points are experimental data, the continuous lines are the theoretical results.

6. Experimental and simulated time series superimposed on the restoring force. Numerical, (a) Ω = 4.40 rad/s; (b)

Ω= 3.36 rad/s; Experimental, (c) Ω= 4.40 rad/s; (d) Ω= 3.36 rad/s.

7. Numerical (a-d) and experimental (e-h) time series. (a) Ω = 4.9 rad/s; (b) Ω = 4.9 rad/s; (c) Ω = 7.6 rad/s; (d)

Ω= 7.8 rad/s; (e) Ω= 4.9 rad/s; (f) Ω= 4.9 rad/s; (g) Ω= 7.9 rad/s; (h) Ω= 8.1 rad/s.

8. Experimental and simulated DFT’s for parts (c,d,g,h) in Fig.7 respectively.

9. Occurrence of snap-through. (a) simulation, (b) experiment, (c) relative dominance of co-existing attractors (simu-

lation only). Green - non-snap, red - P1 snap-through, blue - higher periodic or chaotic (less frequent) snap-through. The

vertical dashed red lines in (a) and (b) indicate the specific frequencies relating to Fig.7.

10. Average kinetic energy as a function of forcing frequency, (a) simulation, (b) experiment.

11. Distinction between chaotic and non-chaotic behavior based on (a) the largest Lyapunov exponent, (b) the peak-

count criterion; (c) and (d) typical chaotic time series, (e) relative dominance of chaotic behavior.

12. Experimental LE and peak count. (a) and (b) typical linear fits for the local rate of divergence, (c) Largest LE as a

function of the forcing frequency, (d) corresponding peak count result.
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A Heuristic Method for Identifying Chaos from Frequency Content
R. Wiebe1, a) and L.N. Virgin1, b)

School of Engineering, Duke University, Durham, NC.

(Dated: 2 November 2011)

The sign of the largest Lyapunov exponent is the fundamental indicator of chaos in a dynamical system.
However, although the extraction of Lyapunov exponents can be accomplished with (necessarily noisy) exper-
imental data, this is still a relatively data-intensive and sensitive endeavor. This paper presents an alternative
pragmatic approach to identifying chaos using response frequency characteristics and extending the concept
of the spectrogram. The method is shown to work well on both experimental and numerical data.

Keywords: Chaos, Lyapunov Exponents, Frequency Analysis

It is often easy to distinguish between chaotic
and nonchaotic trajectories by visual inspection
of their time series and frequency spectra. The
frequency transform of chaotic time series gener-
ally show certain characteristic signatures such as
fractal geometry and broadband frequency con-
tent. This is contrasted with the distinct sig-
nature of periodic, or nonchaotic behavior. The
heuristic method developed herein uses a quan-
tifiable measure based on the broadband non-
smooth nature of the frequency spectra of chaotic
trajectories. The method is then verified numeri-
cally and experimentally by comparison with the
largest Lyapunov exponent.

I. BACKGROUND

Chaos is defined as the output of a deterministic dy-
namical system that exhibits sensitivity to initial con-
ditions. If the governing equations are known then it is
usually straightforward to interrogate (especially chaotic)
behavior. In the experimental (noisy) context, however,
it is more challenging to characterize behavior under cer-
tain parameter regimes. An excellent summary of time
series analysis and chaos is provided in1–3. The Lya-
punov exponent (LE) spectrum of a dynamical system
describes the divergence/convergence rate of nearby tra-
jectories in state space4 and is the most direct measure
of chaos. Determining the LE spectrum of a numeri-
cal system can, in principle, be done directly as the full
system state is known. An algorithm for calculating the
LE’s of a numerical system is given in5. For experimental
data, however, the process is more difficult since not all
states are typically measured and because the lineariza-
tion (or normalization) required in calculating the LE is
not possible. Therefore in order to extract the LE’s of an
experimental system one must normally reconstruct the

a)Electronic mail: rw75@duke.edu.
b)Also at Center for Nonlinear and Complex Systems, Duke Uni-
versity, Durham, NC.

phase portrait via time lag embedding and then use the
method of nearest neighbors to analyze the divergence
rates6–8. This method typically requires long time series
to ensure accuracy and requires some tuning of the time
span over which the divergence remains approximately
exponential, i.e. the time span over which the LE may
be calculated. The difficulty of calculating LE’s from
noisy time series is discussed in9.

In many dynamical systems the presence of noise can
lead to a phenomenon known as unstable dimension vari-
ability (see10 for an overview). This occurs when the
number of stable, unstable, and neutrally stable eigendi-
rections change intermittently when a system is per-
turbed between co-existing invariant sets by noise. One
anticipates that this phenomenon would further compli-
cate the calculation of LE’s.

Another interesting approach for identifying chaos is
discussed in11 whereby noise is artificially added to a sig-
nal in order to find the threshold noise limit whereby
the nonlinearity becomes undetectable. This ’titration’
method is shown to work quite well and has the added
benefit of also revealing the level of noise in the system,
however it also requires one to choose some nonlinearity
indicator.

Frequency analysis is commonly used to characterize
noisy signals and is a standard procedure in signal pro-
cessing. The power spectrum of noisy signals has long
been used to characterize the noise type with the power
spectrum power law12. The frequency content of deter-
ministic or systems with minimal noise is also commonly
used to qualitatively identify whether a time series is
chaotic or periodic13–15. However, the inspection must
be done qualitatively and therefore the method is not
tractable for a full investigation of the parameter space
of a dynamical system. Attempts have been made to
automate the identification process by assigning a single
metric to the power spectrum or DFT of a time history
such as its fractal dimension16. The heuristic method dis-
cussed and developed herein, which consists of a counting
the peaks on the DFT, was first mentioned in17. How-
ever, the method was only applied to a numerical system,
and the effects of noise were not thoroughly discussed.
The effect of noise on the method was studied numeri-
cally in18. In the following, the same method is applied
to an experimental system, which serves to validate its
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practicality, and confirm its ability to work well even in
the presence of real noise.

II. THE HEURISTIC METHOD

It is often straightforward to distinguish between
chaotic and nonchaotic trajectories by inspecting their
frequency spectra. A periodic signal will have a spec-
trum dominated by a single peak (harmonic) or a finite
set of peaks for a more complicated but still periodic,
or quasi-periodic, signal. Noise tends to cause a slight
spread in the width of these peaks and some underly-
ing low level energy across the frequency spectra, but
the peaks are generally still easy to distinguish. For a
chaotic response, on the other hand, the spectral content
is spread over a relatively broad range of frequencies. A
spectrogram or waterfall plot19 summarizes these effects
as a system parameter is changed, i.e., there is a distinct
change in the frequency signature at a bifurcation. In
some circumstances we wish to display different types of
behavior as two parameters are changed. Spectrograms
are however limited to showing bifurcations in a single
parameter, as two dimensions are needed to display the
frequency spectra themselves.

The Heuristic method used herein extends the idea of
the spectrogram to allow plotting of multi-parameter, es-
pecially two-parameter, systems. The heuristic approach
relies on the noisy nature of the Fourier transform of
chaotic trajectories and is summarized in Fig. 1. First
a DFT/FFT is applied to a time series of the dynami-
cal system of interest. For a steady-state response it is
appropriate to use just a single sample (as used in the ex-
amples in this paper), providing sufficient data is used to
capture the essential dynamics. Just as in the calculation
of LE’s one needs to allow the system to settle onto the
attractor prior to beginning the calculation of the DFT.
Once the DFT is obtained a threshold value is chosen
based on the maximum peak height of the frequency spec-
tra, represented by the dashed line in Fig. 1. The number
of peaks (local maxima) above this threshold are counted.
If the number of peaks counted is above a second thresh-
old the system is considered chaotic, otherwise it is la-
beled periodic. The challenge arises in choosing the two
threshold values. The DFT of a periodic signal contains
only a handful of peaks at resonant frequencies as in Fig.
1(a). However in the presence of noise (or rounding error
in the case of simulation) the curve, when magnified, will
contain many local maxima especially near zero (as in
Fig. 1(b)). The first threshold can therefore usually be
chosen to be a small percentage of the maximum peak
height, and therefore only the excited frequencies will be
counted for a periodic signal. Chaotic signals, however,
produce many peaks on a similar order of magnitude to
the maximum peak as seen in Fig. 1(c). The dichotomy
of peak counts seen in Fig. 1 are typical of many systems
and usually make it relatively easy to tune the threshold
values.
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FIG. 1. Illustration of heuristic method with typical signals,
(a) periodic, (b) periodic with noise, (c) chaotic.

Typically any state of a system may be used to gen-
erate the DFT as periodic motion in one state of a cou-
pled system typically implies periodic motion in the other
states. However, certain states may produce frequency
spectra in which chaos is easier to ascertain, for instance
in a pendulum angular velocity is bounded whereas the
angle is not.

In essence this method emulates visual identification
of chaos from frequency spectra, and therefore allows for
high resolution sweeps through system parameters in a
relatively hands-off fashion. This allows one to build an
indicator function over the parameter space with a bi-
nary output describing the response as either chaotic or
periodic. As will be seen, no distinction is made between
different types of periodic behavior. In similarity with
any bifurcation diagram, capturing coexisting attractors
would require additional testing based on varying initial
conditions. In practice however, the method is most use-
ful for plotting boundaries in two-parameter space sepa-
rating chaotic from nonchaotic motion.
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One particular advantage of this method over LE’s is
the ease of implementation; one needs only apply a fre-
quency transform, a standard signal processing feature.
It may also be used together with LE’s to provide a level
of mutual verification. Despite its simplicity the method
proves to be surprisingly robust (in the presence of real
noise) and matches excellently with the LE’s of the nu-
merical model, while being much easier to obtain than
experimental LE’s.

The method may run in complications for systems with
a low signal to noise ratios due to the noise raising the
number of peaks on the DFT. One possible method to
counteract this is discussed in1, where several DFT’s are
averaged to reduce noise in the DFT.

III. TEST CASE: A NONLINEAR MECHANICAL
OSCILLATOR

A. Experimental Setup

The heuristic method was tested on the experimental
nonlinear mechanical oscillator shown in Fig. 2. The
oscillator is a product of ”Pasco Systems” and consists
of a pendulum with a torque spring. The pendulum is
comprised of an aluminum disk, with an off-center brass
weight. The torque spring is made up of a pair of lin-
ear springs connected by a string that is looped over a
pulley attached behind the pendulum. The springs also
supply the forcing to the system. The forcing is trans-
mitted by the active spring attached to the pendulum
by the displacement of the forcing arm on the motor, as
shown in the bottom inset of Fig. 2. The forcing motor
is connected to the active spring by a string which passes
through the guide-post (also visible in the bottom inset
of Fig. 2). The guide-post is necessary to transform the
circular motion of the forcing arm into a linear, nearly
sinusoidal, motion on the active spring. The secondary,
anchor, spring ensures that both springs are always in
tension to avoid needing a tension-compression capable
spring. The response of the system is measured by a
rotary motion sensor attached to the axle of the pendu-
lum. The forcing is also measured by a rotary motion
sensor attached to the forcing string directly above the
guide-post.

The potential energy function underlying the system is
the summation of a sinusoidal gravity potential due to the
eccentric mass (the brass attachment), and a parabolic
potential due to the linear torque spring. By altering the
eccentric mass and the torque spring stiffness one is able
to choose the number of static equilibria of the system;
one may choose 1, 3, 5, ... equilibira in an appropriate op-
erational range. Another parameter in the experimental
system is the zero point of the forcing, i.e. the angle
of the forcing arm and the corresponding position of the
static equilibria. For this paper the spring stiffness and
mass were chosen such that there were three equilibria
with the forcing zeroed, with the unstable equilibria be-

Magnet

FIG. 2. Experimental apparatus.

ing the inverted pendulum state and therefore two sym-
metric stable equilibria (one of which is shown in the top
inset figure 2). The force zero point was chosen to be
when the forcing arm was horizontal. This was selected
because setting a horizontal forcing arm coinciding with
a vertical unstable equilibrium (i.e. inverted pendulum
state) was the easiest to consistently calibrate between
experimental runs.

B. Numerical Modelling

Figure 3 shows a schematic of the experimental appa-
ratus, where θ is the angle of a ray projected to the ec-
centric mass from the pivot measured counter-clockwise
from vertical, y0(t) is the time varying linear displace-
ment of the driving string above the guide-post, m is
the mass of the brass attachment, M is the mass of the
aluminum disc, rm is the radius of the aluminum disc
(note that the eccentric mass is centered at the edge of
the disc), rp is the radius of the pulley attaching the
springs to the pendulum, k1 and k2 are the stiffnesses of
the active and anchor springs respectively, and d is the
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distance between the guide-post and the axle of the driv-
ing motor. The two adjustable forcing parameters for
the system are the length of the forcing arm L and the
forcing frequency f . The rotary motion sensor attached
to the forcing string (located between the guide-post and
spring 1) is omitted for clarity. The equation of motion
describing the system is given by

θ̈ + 2ζω0θ̇ + ω2
0θ −

mgrm

I
sin θ =

k1rp

I
y0(t),

ω2
0 =

1

I
(k1 + k2)rp

2, (1)

I = mrm
2 +

1

2
Mrm

2,

where a small linear viscous damping term with coeffi-
cient ζ is inserted to capture the viscous energy dissipa-
tion of the system.

θ

k

k

1

2

y (t)
0

m
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r
m

r
p

d
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f

M = 0.1185 Kg
m = 0.0144 Kg
r  = 0.0239 m
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1 2

m

p

guide-post

FIG. 3. Schematic of system (not to scale).

The choice of zero-ing the forcing with the forcing arm
horizontal leads to a slightly biased forcing due to the
geometry relating the forcing arm and the guide-post as
shown in Fig. 3. The motion of the string above the
guide-post driving the active spring is given by

y0(t) =
√

d2 − 2Ld cos (2πft) + L2 −
√

d2 + L2. (2)

Note that it was decided to not normalize the length
scale as the units are of a physically appreciable scale,
and there is no clear meaningful characteristic length for
the system. Figure 4 shows a time series and a time
lag plot (with a time lag of one forcing period) of Eqn.
(2) versus experimental measurement and a sinusoid for
comparison. It is clear that Eqn. (2) captures both the
bias and the shape better than the sinusoid.
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FIG. 4. System identification: forcing. Dots = experimental
data, black line = Eqn. (2), red line = sinusoid. (a) Time
series, (b) time lag portrait.

Damping is provided by eddy current drag from the
interaction between the aluminum disc and a permanent
magnet placed slightly behind it (visible in the top inset
of Fig. 2). This form of damping is described in20 and is
shown to be linear viscous damping as long as velocities
are not too large. Determining at which velocity the lin-
ear viscous damping assumption fails requires extensive
electromagnetic analysis and was not investigated. The
excellent agreement between experimental and numerical
results shown later, however, suggest that the velocities
obtained experimentally are well below this threshold.

For a linear system there are many well-tested meth-
ods of assessing energy dissipation such as logarithmic
decrement and the half-power methods21. In order to ap-
ply these methods the eccentric brass mass was removed
leaving a simple linear oscillator (Eqn. (1) with m = 0).
The damping coefficient obtained by removing the mass
must however be corrected by

ζ =

√

Im=0

I
ζm=0 ≈ 0.90ζm=0. (3)

The correction is necessary because the damping is lin-
early proportional to velocity prior to normalization, i.e.
the term 2ζω0I is constant. Therefore ζ must change
inversely with

√
I since ω0 ∝ 1/

√
I.

Figure 5 shows the results of three different methods of
assessing damping. The logarithmic decrement method
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uses successive peak heights in the free decay time series’
as shown in 5 (a). The damping coefficient can be ap-
proximated by the relation ζ = ln (An/An+m)/2πm. The
blue and black lines in part (a) both yielded ζm=0 ≈ 6.0%
or ζ ≈ 5.4% for the corrected damping coefficient. Part
(b) shows the frequency response curve for a forcing am-
plitude of L = 5.5cm. This curve is used in the half
power method to obtain the damping coefficient from
the relation ζ = (f2 − f1)/2f0 which yields ζm=0 ≈ 6.5%
or ζ ≈ 5.9% for this system. A subtle issue with this
approach is that the half power relation is derived for
a sinusoidal forcing function, however as already shown
the forcing for this system is not quite sinusoidal. Fi-
nally part (c) shows the result of an error minimization
approach, whereby the time averaged error between a
simulated free decay (Eqn. (1) with m = 0, y0 = 0)
and the experimental time series (from part (a)) is plot-
ted against the ζm=0 value used for the simulation. The
minimum error occurs for ζm=0 ≈ 6.2% or ζ ≈ 5.6%. The
first inclination when presented with multiple measure-
ments is to take their average. However, since the three
methods are so different, it is not necessarily true that
the average will be any more physically relevant than any
individual result. It is also unlikely that the results are
accurate to the tenth of a percent. Therefore it was de-
cided to simply take ζ = 6% as two of the methods round
to this value.
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FIG. 5. System identification: damping. (a) Logarithmic
decrement, (b) half power method with f1 = 0.65Hz, f0 =
0.69Hz, and f2 = 0.74Hz, (c) error minimization.

The equation of motion (Eqn. (1)) was simulated using
a fourth-order Runge-Kutta time stepping scheme22, and
is in excellent agreement with the experimental results.
Figures 6 and 7 show the numerical and experimentally
obtained time series’ and DFT’s of a small amplitude
and large amplitude period 1 (i.e. one response cycle
for every forcing cycle) oscillation respectively. Figure 8
shows the same for a period 3 (i.e. one response cycle

for every 3 forcing cycles) oscillation with the addition
of the phase portraits to highlight the more complicated
motion. Finally Fig. 9 shows the numerically and exper-
imentally obtained time series’, phase portraits, DFT’s,
and Poincaré sections for a chaotic oscillation. The phase
portraits were all obtained using time lag embedding with
a time lag of a quarter of the forcing period. The chaotic
Poincaré section data was however taken once per forc-
ing cycle, and numerical differentiation was used to ob-
tain the angular velocity experimentally. (The dashed
line running across the DFT’s for all of these samples is
at 5% of the maximum peak height. This is the cut-off
used for peak counting in the Heuristic method applied
later.)
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(c) experimental time series, (d) experimental DFT.

205 210 215 220
t (sec)

-200

-100

0

100

200

θ(t) (degrees)

205 210 215 220

-200

-100

0

100

200

t (sec)

θ(t) (degrees)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

(d)

(b)

(c)

Ω (Hz)

Ω (Hz)

F(Ω)/F(Ω)

F(Ω)/F(Ω)
max

max
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FIG. 9. Chaotic oscillation, L = 5.5cm and f = 0.95Hz. (a) Numerical time series, (b) numerical phase portrait, (c) numerical
DFT, (d) numerical Poincaré section, (e) experimental time series, (f) experimental phase portrait, (g) experimental DFT, (h)
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C. Identification of Chaos

There are many applications where one is interested
the parameter dependence of a system. There are many
forms of bifurcation diagrams used to present the qualita-
tive changes (in our case whether the response is chaotic
on nonchaotic) in behavior with respect to a change in
parameters. Producing bifurcation diagrams, especially
experimentally, is typically a laborious process. Any
method that would reduce the amount of data required to
qualify the nature of a response as chaotic or nonchaotic
would therefore be highly advantageous.

Spectrograms are at the heart of the heuristic method
and may be used as a one-dimensional bifurcation di-

agram. Figure 10 shows numerical and experimental
spectrograms over a range of forcing frequencies with the
forcing amplitude held constant at L = 5.5cm. The ordi-
nate of the spectrograms is the response frequency while
the contour indicates the power of the system (dark col-
ors are low power, light colors high power) at that fre-
quency. The resolution of the spectrograms is 100 and 58
individual DFT’s respectively for the numerical and ex-
perimental plots respectively, with each DFT containing
300 data points between 0 and 3 Hz. Spectrograms are
useful in that they clearly indicate the components of a
periodic response, and show chaotic regions as bands of
erratic contouring. Their downside is that since one di-
mension is used to plot the response frequency, only one



7

system parameter may be studied at a time. The heuris-
tic method works to free-up this dimension, rather than
plotting the entire DFT of a response, only the number of
peaks is plotted. In doing this one loses the information
about the nature of a periodic response, however there
is still a clear difference between chaotic and periodic re-
sponses. Figure 11 shows the number of peaks out of a
total possible 300 points on the DFT versus the forcing
frequency (again for L = 5.5cm) for the numerical and
experimental system. In order to make the comparison
more direct, the numerical resolution (again along the
forcing frequency axis) was reduced down to 58 to match
the number of experimental tests performed. The cut-off
threshold for this plot was set at 1% of the maximum
peak height to eliminate false peaks (due to noise) being
counted. It is clear that this method produces a useful
alternative bifurcation diagram as the number of peaks in
the chaotic and nonchaotic regions is easy to distinguish.
Note that dashed vertical lines denote the locations of
the four samples in Fig.’s 6 to 9.

All of the time series used, both experimentally and
numerically, were first allowed to run for a period of 200
seconds to allow transients to decay and then the follow-
ing 100 seconds were recorded for analysis. The selection
of these two times should be made on a system specific
basis. In the case of periodically forced systems this is
made somewhat easier, as one may just select a time pe-
riod long enough to capture several forcing periods. How-
ever, one also needs to consider how many points they
require on the DFT of the response. This is important
when applying the heuristic method because the number
of peaks on a periodic response does not typically increase
with resolution, whereas for a chaotic response the num-
ber does increase with resolution. Therefore there should
be enough points to allow for a clear difference in peak
counts, where this distinction will grow more and more
clear with increasing resolution.

The sensitivity of the peak count cut-off threshold is
investigated in Fig. 12 for the experimental data. Part
(a) shows that a wide range of threshold values from 1%
to 10% of the maximum peak height yield easily distin-
guishable regions of chaos and periodic behavior. For the
case of a 0% cut-off periodic responses begin to be masked
by noise, making it difficult to distinguish chaotic from
periodic responses. This is expected and is due to the low
magnitude peaks in the DFT discussed earlier. Part (b)
shows the peak count values versus the cut-off threshold
for a periodic (f = 0.55 Hz) and chaotic (f = 0.95 Hz)
trajectory. These two frequencies correspond to Fig. 7
and Fig. 9 respectively. This highlights the drastic dif-
ference between the peak counts for periodic and chaotic
trajectories. The peak counts fall off very rapidly with
threshold for the periodic case, while they only gradu-
ally drop off for the chaotic case. This shows that the
output (binary output of either chaotic or nonchaotic) is
quite insensitive to the selection of the cut-off threshold.
The method is still likely limited to systems with rela-
tively high signal to noise ratios where the noise does not
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FIG. 10. Spectrograms, (a) numerical, (b) experimental.

swamp the frequency spectra of the response. Of course,
the presence of noise also makes the determination of
LE’s more difficult. However, the system noise level is
not atypical of periodically forced low-order mechanical
systems.

In order to verify the above bifurcation diagrams, sev-
eral other methods were also applied. Figure 13 shows
numerical and experimental one-parameter amplitude bi-
furcation diagrams over the same frequency range. The
dashed vertical lines again show the locations of the four
samples in Fig.’s 6 to 9. The ordinate axis shows the
amplitude difference between a peak and the following
valley in the time series of θ(t). To develop this plot
an individual simulation/test was run for each forcing
frequency (400 simulations numerically, 58 tests experi-
mentally). The system was again allowed to run for an
initial period of time to allow transients to decay. For a
periodic time series all of the data points will lay on top
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FIG. 12. Sensitivity of peak counts to cut-off threshold.
Threshold = 0% (black), 1% (blue), 5% (red), 10% (green).

of one another, while for a chaotic time series they will
be scattered about. It is interesting in the chaotic band
between approximately f = 0.8Hz and f = 1.0Hz that
there is a strip of mid-range ∆θ values that are never
visited. This makes sense since in a system with a pe-
riodic potential the oscillations will either be within a
single potential well and therefore small, or crossing be-
tween the two wells and therefore large. The agreement
between the experimental and numerical results is excel-
lent and they both show a resonant jump in amplitude
near f = 0.65Hz which is typical of ’softening’ spring
systems23. There is also excellent agreement with the
peak count plots.
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FIG. 13. Amplitude bifurcation diagram, (a) numerical, (b)
experimental.

Figure 14 shows the numerically obtained largest LE
bifurcation diagram for the same parameter range. The
curve was obtained by simulating the equation of mo-
tion, and calculating the largest LE using the method
in5. Once again the dashed vertical lines denote the four
samples in Fig.’s 6 to 9. The regions of positive largest
LE agree well with the regions of chaos in Fig.’s 10 to 13.
Note that for a nonchaotic trajectory the true largest LE
of a temporally forced system is zero since the time state
is non-converging. However since the numerical method
has direct access to each state one may remove time from
the divergence calculations and therefore obtain negative
LE’s.
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FIG. 14. Numerical LE bifurcation diagram.

Determination of LE’s from experimental data is a sen-
sitive procedure. In calculating LE’s numerically from an
equation of motion one has the ability to either normal-
ize and restart the analysis of divergence rates of nearby
trajectories or to simply linearize the divergence rates.
This makes it possible to calculate the LE directly by
its definition as an exponential divergence rate. This is
not possible with experimental data. One useful method
however, especially with small data sets, is discussed in7.
In this method the phase portrait is first reconstructed
and then the nearest neighbor is found for each data
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point. Then the pairs of nearest neighbors are stepped
forward in time and their divergence rate is monitored.
Finally the average of the logarithm of the divergence
rate of nearest neighbors is taken over all sets of pairs
at each point in time (relative time for each pair). In
the best case there is a relatively long lasting period of
time in which the plot of the logarithm of the divergence
rate is approximately linear. The slope of the linear por-
tion is of course the divergence rate, and therefore the
LE of the system. Of course, as two nearby trajectories
grow far apart the dynamics of their divergence rate will
become more and more nonlinear and hence the loga-
rithm of the divergence will eventually lose its linearity.
The time scale over which the linear behaviour occurs
and the largest LE may be calculated is highly system
and parameter dependent making it very difficult to tune
for a hands-off analysis over parameter space. For many
systems, especially autonomous or low dimensional sys-
tems, the nearest neighbors divergence approach works
very well for calculating LE’s (See Appendix). However
for the forced oscillator studied herein the results were
less impressive. Figure 15 shows the logarithm of the di-
vergence rate of initially nearby trajectories as a function
of time for two different sets of forcing parameters. Part
(a) is for the chaotic response in Fig. 9 while part (b) is
for the periodic response in 7. The red lines (left vertical
axes) shows the average of the Logarithm of the diver-
gence of nearest neighbors for experimental data, while
the blue lines (right vertical axes) shows the same (using
the same method) on numerically simulated data from
the equation of motion. The experimental curves have
a much larger y-intercept as the nearest neighbors are
much farther apart with experimental data. The slope
of the dashed lines is equal to the exact LE’s, that is the
LE obtained directly from the equation of motion earlier.
This dashed line was placed artificially and its y-intercept
is not particularly meaningful. The time lag (for this case
it was 1/4 of the forcing period) which is used to recon-
struct the phase portrait can effect the result. However
the curves in Fig. 15 were relatively insensitive to this
parameter, a fact which is also mentioned in7. It is clear
from part (a) that tuning the time scale over which to
calculate the LE would be difficult for this system as
there is no clear linear portion of the line. For part(b)
one would hope that the experimentally obtained LE for
a periodic trajectory would be either negative, zero, or
at least much smaller than those for a chaotic response.
This is the case for the blue line, but the experimental
data still appears to have a positive slope. It is likely
that this is due to the real noise in the system, as the
phase portrait in Fig. 7 is clearly periodic.

In general it is not immediately clear whether the
heuristic method or the LE approach require longer time
series to obtain a good result, however for this system it
appears that the heuristic method yields better results.
The experimental time series used in this system were
all 100s long, which is approximately 16 forcing cycles
in the vicinity of the 1 Hz forcing region of the bifurca-

tion diagrams. This was done because a large number of
parameters were investigated. To the naked eye it is rel-
atively easy to distinguish between periodic and chaotic
responses over this number of cycles. This is also usually
enough cycles to capture quasi-periodicity on the DFT
of the response, as long the Nyquist frequency is high
enough to capture all of the dominant frequencies (the
sampling rate used was 200 Hz which was well above
any contributing frequencies in the response). However,
especially for a chaotic response, this may not provide
enough pairs of nearby neighbors with which to yield a
good approximation of the LE.
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In order to obtain the boundaries between chaotic and
periodic response in two-parameter space, (f , L), one
can plot the peak count as a contour plot versus any two
parameters. Figure 16 shows the results from numerical
LE calculations where regions colored orange indicate pa-
rameters with a chaotic response (LE > 0) while regions
in red indicate a periodic response (LE < 0). The hor-
izontal line at L = 5.5cm denotes the forcing amplitude
of the one-parameter bifurcation diagrams presented ear-
lier. The resolution of the plot is 200 points in the fre-
quency axis and 200 in the forcing amplitude axis yielding
40,000 total points.

The two-parameter plot is where the heuristic method
is especially useful over the standard spectrogram. Fig-
ure 17 shows the results of the two-parameter investi-
gation using the heuristic method on both numerically
simulated and experimental data. The peak count cut-off
threshold used was 1% and 5% respectively for the nu-
merical and experimental cases. Selection of these values
was aided by referencing Fig.’s 11 and 12. The numerical
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threshold could be chosen smaller since the only source
of ’noise’ is due to the numerical errors. To allow for a di-
rect comparison with LE’s it was decided to set a second
threshold peak count number separating classification as
either chaotic or periodic. This was made relatively easy
due to the clear dichotomy in the peak counts between
chaotic and periodic responses shown earlier. This second
threshold was chosen to be 40 and 20 peaks respectively
for the numerical and experimental cases. These values
were chosen as points approximately mid-way between
typical chaotic and periodic response peak counts by ref-
erencing the one-parameter peak count plots in Fig.’s 14
and 15. The resolution for part (a) is 40,000 data points
(same as Fig. 16) while the resolution for the experimen-
tally obtained plot in part b) is only 58x15. The agree-
ment is once again excellent, as is the agreement between
the LE’s and the heuristic method. It is important to
note that the standard LE approach also frequently re-
quires calibration via visual inspection for experimental
data. The run time over which to determine the LE is
especially difficult to perform automatically and is fre-
quently somewhat ambiguous as seen in Fig. 15.
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FIG. 16. Chaotic boundaries in parameter space: numerical
LE’s.

IV. CONCLUSIONS

A heuristic method for identifying chaos is developed
and tested both numerically and experimentally on a
nonlinear mechanical oscillator. The method is used to
create several bifurcation diagrams and shows excellent
agreement with numerically obtained Lyapunov expo-
nents, much better in fact than the experimentally ob-
tained Lyapunov exponents.
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FIG. 17. Chaotic boundaries in parameter space: heuristic
method. (a) Numerical, (b) experimental.
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Appendix: The Lorenz Equations

In order to show the applicability of the method to
other systems it has been applied numerically to the fa-
miliar Lorenz equations24,25

ẋ = σ(y − x),

ẏ = rx − y − xz, (A.1)

ż = xy − bz,

with parameters (σ, r, b) and states (x, y, z). Figure 18
shows a typical periodic and chaotic response for the
Lorenz equations. Figure 19 shows the chaotic bound-
aries in (σ, r) space with b = 8/3 obtained using the
heuristic method and the using LE’s. The white dots
shown in the figure denote the location of the samples
shown in Fig. 18. The heuristic method was carried out
using a peak count cut-off threshold of 1% of the maxi-
mum peak.
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FIG. 18. Sample responses (numerical) from the Lorenz equa-
tions, r=200, b=8/3, (a) σ = 100, (b) σ = 25.

The experimental nearest neighbors divergence
method works better on the Lorenz system than it does
on the forced oscillator (Fig. 12). Figure 20 shows the
results of the nearest neighbors approach versus direct
calculation of LE’s. These are 1D slices as indicated
by the horizontal dashed lines in 19, i.e. three chaotic
zones when r = 500, and two when r = 200. Once
again the nearest neighbors method here is applied
to data simulated from the equation of motion, and
then compared to the direct method of LE calculation.
Parts (a) and (b) show the average logarithm of the
divergence of nearest neighbors for two different sets of
parameters located in two different bands of chaos for
r = 500. The time scale over which the LE may be
calculated (the linear portion) is much easier to identify
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FIG. 19. Chaotic boundaries in two-parameter space for the
Lorenz system for b = 8/3. (a) Heuristic method, (b) LE’s.

and appears to be much more stable for the Lorenz
system. The dashed lines superimposed on each plot has
the slope of the LE which was obtained by the direct
numerical approach. Part (c) shows a comparison of
the one-parameter LE bifurcation plots obtained using
the experimental approach (black line) and the direct
numerical approach (red line) for r = 500, where the
two vertical dotted lines indicate the location of parts
(a) and (b). Finally part (d) shows the same comparison
of the bifurcation diagrams, but this time for r = 200,
while the two vertical dashed lines now denote the
location of the phase portraits in Fig. 18. For the
experimental data approach the LE was calculated by
obtaining the approximate slope of the logarithm of
the divergence plot from t = 0s to t = 0.3s as this
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appears to be reasonably a stable zone where the line
remains nearly linear. The curves were all obtained
with 50s simulations and 5000 data points and the time
lag used for phase space reconstruction was 11 time
steps. These are all the same parameters that were used
in7. The difference in the magnitude between the two
methods could likely be reduced by a more thorough
calibration of the time lag and slope measurement time
span, however the agreement on the locations of the
bifurcations between periodic and chaotic behaviours is
excellent.
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FIG. 20. Comparison of LE calculation methods for b =
8/3,r = 500 for (a),(b),(c), and r = 200 for (d). Parts (a)
σ = 50, and (b) σ = 130, show the average logarithm of the
divergence rate of nearest neighbors. Parts (c) and (d) show
bifurcation diagrams from the direct numerical method (red),
and the experimental approach (black).
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a b s t r a c t

A non-linear finite element formulation (three dimensional continuum elements) is implemented and
used for modeling dynamic snap-through in beams with initial curvature. We identify a non-trivial
(non-flat) configuration of the beam at a critical temperature value below which the beam will no
longer experience snap-through under any magnitude of applied quasi-static load for beams with
various curvatures. The critical temperature is shown to successfully eliminate snap-through in dynamic
simulations at quasistatic loading rates. Thermomechanical coupling is included in order to model a
physically minimal amount of damping in the system, and the resulting post-snap vibrations are shown
to be thermoelastically damped. We propose a test to determine the critical snap-free temperature for
members of general geometry and loading pattern; the analogy between mechanical prestress and
thermal strain that holds between the static and dynamic simulations is used to suggest a simple
method for reducing the vulnerability of thin-walled structural members to dynamic snap-through in
members of large initial curvature via the introduction of initial pretension.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thin structural members can dynamically jump between
multiple equilibrium configurations when subjected to mechan-
ical forces, acoustic vibrations, and thermal loads like those
encountered by aerospace vehicles in extreme operating condi-
tions. This process, commonly referred to as snap-through, can
cause large-amplitude structural vibrations, induce fatigue, and
lead to global instability. Such vibrations can have a chaotic
pattern and therefore can be difficult to control [1]. Avoiding
snap-through is therefore highly desirable in the design of thin-
walled structures such as aircraft and spacecraft.

In this paper, the existence of a critical temperature below
which an initially curved beam will no longer experience snap-
through at any applied quasi-static load level is demonstrated.
This temperature provides a lower bound below which snap-
through instability no longer occurs. This temperature also
corresponds to a non-trivial (that is, non-flat) deformed beam
configuration, a fact that is not apparent through methods used to
characterize snap-through that are limited to modeling small
deflections. We argue that such a limit can be obtained for a

variety of static loads and that it also reduces the amplitude of the
oscillations when loads are applied at dynamic rates. Through
numerical experiments we show this limit to be found at states
characterized by specific properties associated with the energy of
the system and the directional derivatives of this energy function.

Experimental characterizations of snap-through under mechan-
ical vibrations and combined thermal and mechanical loads have
existed for several decades [2–4], but numerical modeling of
snap-through remains an area of active research. In the general
case, snap-through involves combined flexural, shear, and normal
stresses, large time varying deflections and rotations, and thermal
effects. Non-linear coupling between these effects makes snap-
through challenging to model accurately. An extensive literature
exists on the subject, with models describing different degrees of
geometric non-linearity [5,6], material non-linearity [7–9], thermal
and acoustic loading [10–12], and various combinations of these
factors [13,14].

Previous research on snap-through falls into three general
categories: (1) limited-deflection models (based on the von
Karmann or Duffing equations for plates), (2) elastica models
(based on specialized analytical techniques going back to Euler),
and (3) non-linear (finite-deformation) finite element models.

The first category suffers from the most significant limitation:
these models can only describe member deflections of less than
2.5 times the member thickness [5]. This is especially problematic
because large initial curvatures that may be present by design,
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e.g., in a rocket booster hull or aircraft wing, will lead to larger
snap-through loads and therefore more severe and damaging
post-snap vibrations, none of which can be modeled with limited
deflection formulations.

Elastica methods are valid at a theoretically unlimited range of
deflections and initial curvatures, at the cost of increased math-
ematical complexity. These techniques have only recently been
extended to the solution of thermal and snap-through problems
[15–17]. This is most likely due to the increased ease of solving
the equations numerically, e.g., by shooting methods [18,19].
Although there is no apparent limitation to obtaining the results
discussed in this paper by elastica methods (other than possible
limitations to particular instances of the theory, e.g., the common
omission of shear strain), they are not as well-developed for
general classes of problems as non-linear finite element methods.

Non-linear finite element methods are the most general of the
methods available to model snap-through, an advantage for which
they sacrifice the direct, problem-specific analytical insight that is
available via the first two methods. This lack of transparency is
more than compensated by the versatility to model geometric
non-linearity, thermomechanical coupling, large strains, material
non-linearity, fluid–structure interaction in aircraft, etc.

The non-linear finite element method is chosen for this study; it is
capable of including the full range of non-linearities that influ-
ence snap-through and can easily model large deflections. Beam
and shell models, usually the most computationally efficient
choice for finite element modeling of thin structural members,
always involve some simplifications of the underlying three-
dimensional kinematics that can lead to artificial stiffness under
particular load states (locking). These kinematic assumptions that
are built into the formulation of structural elements can lead to
inaccurate solutions [20]. In this work we avoid such issues as
well as the locking sometimes present when linear elements are
used by choosing to work with three-dimensional (solid) quad-
ratic elements only. In this paper, the numerical simulations are
performed with the Finite Element Analysis Program (FEAP), an
open source research code, which provides a framework for finite
element simulations where we can formulate and implement
additional elements, constitutive models and solution schemes
via user subroutines. The formulations utilized for the analysis
discussed in this paper are a mix of FEAP original elements and
user routines [21].

By thermomechanical coupling we refer only to the coupling
between elastic deformation and thermal effects via the thermal
strain terms in the equations of mechanical equilibrium and the
structural elastic heating term in the heat equation. Although
thermoelastic coupling is present in all materials, it is often
neglected; however, for large-amplitude vibrations, the thermal
gradient induced between the compressive and tensile fibers of a
vibrating member due to purely elastic deformation results in
significant heat conduction and therefore loss of energy via
thermoelastic damping. We do not include any other mechanisms
of dissipation besides thermoelastic damping, so the damping in
our study is physically minimal, and the resulting vibrations are
exaggerated relative to real physical systems.

In many studies [22,23], thermal strain due to applied tem-
perature is included without modeling thermoelastic coupling:
temperature changes are thus treated as a simple mechanical
expansion or contraction of the material. This can be useful in
tracing static solution paths, and may also give information about
the temperature-sensitivity of a particular structure, but the
absence of thermoelastic coupling can impact the accuracy of
dynamic simulations, especially as amplitudes of vibration
become large. We employ the strain-only method in our static
simulations, but move to full coupling in order to capture relevant
dynamic coupling effects.

Modeling of thermomechanical coupling also requires the
selection of an appropriate thermomechanical material constitu-
tive law. A hyperelastic constitutive law based on a modified
neo-Hookean material that is appropriate for metals has been
proposed in previous studies [24]. Since we will be primarily
concerned with metals, the modified thermomechanical neo-
Hookean material law is appropriate and will be valid at a much
larger range of strains than the thermomechanical St. Venant–
Kirchhoff law.

Failure to account for any of the above modeling concerns can
significantly impact the accuracy of dynamic simulation results.
The formulation adopted for this study accounts for the geometric
non-linearity, large strains, and thermomechanical coupling
effects required to describe snap-through. It is a non-linear finite
element formulation that uses the adiabatic staggered scheme
and the constitutive law detailed in [24] and quadratic hexahe-
dral (or tetrahedral) elements.

The initial boundary value problem is formulated as follows:
For all tAI find the motion (/) and temperature (T) fields
such that

r0
@2

@t2
/¼ div Pþb,

c _T ¼D#K#J div½q=J%þR, ð1Þ

with boundary conditions Pn0 ¼ t on Gs ( I, /¼/ on Gf ( I,
qn0 ¼ q on Gq ( I, T ¼ T on Gq ( I and initial conditions /9t ¼ 0 ¼ I
in O, ð@=@tÞ/9t ¼ 0 ¼V0 in O, T9t ¼ 0 ¼ T0 in O. O)Rnd is the
domain in the reference configuration, nd is the number of spatial
dimensions in the problem, r0 is the reference configuration
density, P is the first Piola–Kirchhoff stress tensor, b is the
prescribed body force, c is the heat capacity, D is the mechanical
dissipation, K is the heating from the Joule effect [25], R is the
prescribed heat source term, and J is the Jacobian of the deforma-
tion. * denotes the prescribed value of the quantity * over the
appropriate boundary region or at the initial time. The generic
problem described here can be completed with a constitutive law
prevailing in the body and the Fourier law for heat conduction is
assumed to relate the local heat flux q to the temperature
gradient, q¼#½k1%,T, where k is the thermal conductivity and
1 is the identity tensor. For the purpose of this paper, the
constitutive law is assumed to have temperature-dependent
constitutive moduli. After a spatial discretization is applied (e.g.,
finite element) the system (1) can be expressed as a system of
ordinary differential equations with two coupled partitions:
mechanical (second order) and thermal (first order).

For the transient solution we use the adiabatic staggered
scheme for coupled thermoelastic boundary value problems
developed in [24]; this approach splits the solution into partitions
such that the dissipative property of the original problem is
maintained in the partitioned problem. The scheme consists of
(1) a standard finite deformation mechanical phase, formulated
such that it is solved at constant entropy, and (2) a heat conduc-
tion phase, formulated such that it is solved at fixed deformation.

We also adopted the constitutive law from [24, p. 760,
Eqs. (82)–(83)], for a regularized compressible neo-Hookean
material. This is a law that performs well for metals and is given
by the thermomechanical strain energy density function:

CðC,YÞ ¼WðCÞþUð JÞþMð J,YÞþTðYÞ, ð2Þ

where W, U, M, and T are the mechanical deviatoric, mechanical
volumetric, thermomechanical coupling, and thermal-only terms
respectively, given by

WðCÞ ¼ 1
2 mðtrðCÞ#3Þ ¼ 1

2mð J
#2=3 trðCÞ#3Þ,

Uð JÞ ¼ 1
2Kðln JÞ2,
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MðJ,YÞ ¼$3KaðY$Yref Þln J,

TðYÞ ¼ rcm ðY$Yref Þ$Y ln
Y
Yref

! "# $
,

where C is the right Cauchy–Green tensor, m is the shear modulus,
cm is the mass heat capacity, Yref is the reference temperature,
K is the bulk modulus, a is the coefficient of thermal expansion
and J is the Jacobian of deformation.

For the detailed derivation of the components of the finite
element formulations utilized in this work, the interested reader
is referred to [26].

The rest of the paper is organized as follows. In Section 2 we
describe the geometry of the system under consideration and
briefly describe the solution methods utilized to retrieve equili-
brium paths. Section 3 is dedicated to numerical experiments that
trace such equilibrium paths. In this section, we identify special
equilibrium configurations corresponding to boundaries in the
parameter space that separate domains with different stability
behaviors. Among these, the quasi-static temperature limit that
we will refer to as monotonic, i.e., that value of the temperature
below which the equilibrium path is a monotonic curve, and
snap-through is no longer encountered. Section 4 demonstrates,
through a variety of transient simulations, that the monotonic
temperature also identifies a limit below which the amplitude of
the dynamic oscillations is drastically reduced and asymptotically
reaches 0 at temperatures in the neighborhood of the quasi-static
limit. Section 5 provides a generalization of the concept of
monotonic temperature and shows that information regarding
such stability limits is no longer available when some specific
finite element formulations (e.g., the Timoshenko beam) are
utilized. When kinematic approximations such as those used by
the Timoshenko beam are used, information available in the
higher derivatives of the energy is lost in such formulations.

2. Static analysis of a curved beam

A planar curved beam described by an arc of a circle is chosen
as the test problem to explore the effect of applied temperature
and initial beam curvature on snap-through. The problem is
solved in two phases (mechanical and thermal). The beam
geometry is completely specified by the length of the horizontal
projection between the end points L, the projection of the lengths
of the supports LBC, and the radius of curvature of the beam R
(Fig. 1). The primary load case considered is a point load P in the
negative y-direction located at the midpoint between the sup-
ports (Fig. 2a). A distributed load p, applied as a uniform force in
the negative y-direction on each node of the finite element mesh,
is also considered (Fig. 2b).

In simulations, eight different beams were utilized, with R
varying from 762 mm (30 in.) to 5080 mm (200 in.). The effect of
temperature variation on the load–deflection behavior in the case
of larger curvatures was found to be very small, so such test
problems were abandoned.

Table 1 summarizes the geometry of the beams: M is the arch
rise, k¼ 1=R is the curvature of the beam, y is the angle subtended
by the beam, and M=h is the ratio of M to the thickness h of the
beam. Fig. 3 shows the different initial beam curvatures. For all
beams, the projection length is L¼304.8 mm (12 in.), the thick-
ness h¼0.508 mm (0.02 in.) and the transverse depth b¼12.7 mm
(0.5 in.). The ends of the beam are held fixed over a length
LBC¼28.7 mm (1.125 in.) on each end. Material properties are
those of steel, given in Table 2.

In this paper we concentrate our attention to a system
that is effectively two-dimensional; nevertheless, we use a finite

element model with full three-dimensional capabilities. Mesh
refinement studies were performed and the level of refinement
adequate to accurately capture the snap-through loads lead
to a model with approximately 20,000 degrees of freedom. Note
that linear elements suffer from shear locking and are not
appropriate for snap-through problems, or for any problems
involving large deformation. This problem is avoided by using
quadratic elements.

The formulation adopted [24] treats the coupling through an
adiabatic staggered approach. For the quasistatic simulations
of systems under constant temperature presented in the next

x

yR

L
LBCLBC

M

θ
2

Fig. 1. Geometry for semicircular beam.

d

P

L / 2

d

p

L / 2

Fig. 2. Concentrated (a) and distributed (b) loads. The point load is the primary
case considered.

Table 1
Geometry of curved beams.

Beam R (mm) M (mm) k (1/mm) y=2 (rad) M/h

1 762.0 21.84 1.312%10$3 0.2400 86.0
2 1270.0 12.99 0.787%10$3 0.1431 51.1
3 1828.8 8.98 0.546%10$3 0.0990 35.3
4 2133.6 7.70 0.469%10$3 0.0850 30.3
5 2438.4 6.74 0.410%10$3 0.0744 26.5
6 3048.0 5.39 0.328%10$3 0.0595 21.2
7 3810.0 4.31 0.262%10$3 0.0475 17.0
8 5080.0 3.23 0.169%10$3 0.0357 12.7
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section, the mechanical phase is solved in isolation from the
thermal phase, treating the applied temperature change as a
conservative, purely mechanical expansion or contraction of the
beam material. Many other studies have employed this method,
but, with a few exceptions [15,16,6], they have been limited to
beams of small initial curvature.

The case of the point load along the line of symmetry of the
beam provides an easy interpretation of the simulation results.
If the symmetry is not broken by a bifurcation, as may occur if the
second, asymmetric buckling mode emerges [27], the plots of
midpoint deflection d versus load value P will indicate loss of
stability and locate the snap-through and snap-back loads at the
points where @P=@d¼ 0. The ability to obtain such information is
completely dependent on the symmetry of the problem: in cases
without a clear line of symmetry it is no longer possible to obtain
information about the snap-through point from the load–deflec-
tion curve, and even in the symmetric case of the distributed load
this breaks down at heightened temperatures. The simplicity of
the symmetric concentrated load case will make it easier to
develop insight into the stability behavior of the beam, which
we will then need to generalize to cases where important
behaviors are no longer apparent from the load–deflection curves.

2.1. Static solution paths

Snap-through is inherently a dynamic phenomenon; since the
static equilibrium path is interrupted by an unstable region, as
the load is increased, the system must dynamically jump past the
unstable region and onto a stable region capable of bearing loads
above the snap-through load. Unlike column buckling, there is no
stable branch that the system can follow continuously along the
equilibrium path. Nevertheless, useful information can be
obtained by studying the static solution paths.1 The lack of inertia
allows us to simplify the analysis, since there is no need to

consider the effects of varying loading rates. Moreover, the
unstable equilibrium path between the stable regions discloses
information that is relevant to the dynamic case. We mapped the
static equilibrium path by using a pseudo-arc-length procedure to
traverse the unstable region.

The non-linear continuum finite element method recovers
information that is unavailable from methods based on the beam
or plate (restricted kinematics) equations. In particular, there
exists a non-trivial deformed configuration, at a temperature
below the zero-stress reference temperature Yref , that will not
experience snap-through at any applied static load value. The value
of this temperature depends on the initial beam geometry, the
boundary conditions, and the pattern of applied load. Simulations
suggest that any beam that is cooled below this temperature no
longer experiences snap-through.

The subsequent sections in this paper are concerned with
developing tests to establish this lower bound on thermoelastic
instability and determining whether this limit, which is derived
from purely mechanical considerations, is sufficient to eliminate
dynamic snap-through in beam simulations that incorporate full
thermomechanical coupling.

3. Numerical experiments. The quasi-static analysis

The zero-stress reference temperature in all simulations is
Yref ¼ 300 K. Note that the adiabatic staggered scheme is imple-
mented in terms of absolute temperature, so Y refers to absolute
temperature and DT ¼Y"Yref refers to the temperature relative
to the reference temperature.

Applied load versus deflection curves were extracted for all
beams at various temperature variations DT. The R¼762 mm
beam (Fig. 4) shows relatively little variation in load–deflection
curve behavior with temperature variation. This plot is represen-
tative for the results corresponding to beams with larger curva-
tures. Fig. 5 is representative for beams with smaller curvatures.

The key observation made by examining Fig. 5 (and confirmed
for the other six beams for which we do not present the results
here) is that for each beam there exists a critical temperature
below which the beam no longer experiences snap-through at any
load value for a given conservative loading pattern, and exhibits
instead a monotonic dependence of the load on deflection. We will
simply call this critical value the monotonic temperature. The load–
deflection curves for this particular boundary value problem also
possess a center point where all the curves obtained for tempera-
tures above the monotonic temperature intersect; this center
point coincides with the limit point where @P=@d¼ 0 on the
monotonic temperature load–deflection curve itself. Results for Beam
1 presented in Fig. 4 do not include the monotonic curve since for
this particular system the temperature corresponding to it was
non-physical (in a mathematical sense however, it does exist).
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Table 2
Material properties of thermoelastic beam.

Property Symbol Value Units

Young’s modulus E 206,483 N/mm2

Poisson’s ratio n 0.28 –
Density r 7.834#10"9 N s2/mm4

Conductivity k 45.0 N/s K
Specific heat cm 434#106 mm2/s2 K
Thermal expansion a 14#10"6 mm/mm K

1 ‘‘Static’’ refers to the mode of recovery of information on snap-through, not
an actual physical scenario.
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The method presented in this paper indirectly estimates the
lower bound under the assumption of snap-through to a sym-
metric solution branch. This method relies on tracing the full
equilibrium path and on systematic numerical experimentation
to identify the temperature for which the above mentioned path
is monotonic. In this approach, we sweep through the range of
temperatures of interest and check the monotonicity of the
solution.

Although apparently similar results have been known for
many years [5], note that the snap-free configuration disclosed
in such studies is simply the configuration of an unbuckled,
initially flat beam or plate, which obviously will not experience
snap-through under any magnitude of lateral loading (if no
temperature variation is applied). Similarly, the center point in
these studies is simply the unloaded initial configuration. Note
that if the temperature is raised above a critical buckling tem-
perature, such a member will deform into a curved shape that is
itself subject to snap-through [5]. Numerous studies have been
devoted to mapping this and the many subsequent post-buckled
states [22,28]. Our results are distinct from these studies, since
the underlying problem is different: here, rather than an initially

flat plate or beam which must have some initial thermal defor-
mation to experience snap-through, we have an initially curved
beam with fixed supports that displays snap-through at the zero-
stress reference temperature.

Fig. 6 indicates that the monotonic temperature approaches
Yref as k-0, as expected. For small curvatures the lower bound
varies slowly with the curvature. More significant variations are
observed for larger curvatures. For very large curvatures the
method presented here does not apply since taller arches will
buckle asymmetrically. The snap-through loads themselves vary
linearly with beam curvature at DT ¼ 0 K, a fact that has been
determined analytically at small deformation and which appears
to continue to hold at large k; however, snap-through loads no
longer vary linearly with temperature away from the zero-stress
reference temperature (Fig. 7). For beams with very low initial
curvature, if the temperature is too low, the beam will be straight
and in tension and no snap will be experienced.

We can observe several general trends in the results.
The relative influence of temperature on the load–deflection
behavior of the beam diminishes as the curvature k¼ 1=R of
the beam increases. For the case of R¼254 mm, the effect of
even a temperature change of DT ¼ þ100 K is so small that the
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load–deflection curves for different temperatures would be diffi-
cult to distinguish on a graph; the snap-through load at @P=@d¼ 0
barely changed. By contrast, the influence of temperature on the
R¼5080 mm beam is significant enough that DT ¼ þ100 K is
sufficient to more than triple the snap-through load. This effect
can be seen in the decrease in the magnitude of the slope with
increasing curvature shown in plots of snap-through load versus
temperature in Fig. 8. Note that the effect of temperature will be
more significant for materials that are more sensitive to tem-
perature, e.g., aluminum.

Fig. 9 combines these results and shows the snap-through load
as a function of both the geometry (radius) and temperature. The
contour line represents the snap-through boundary, i.e., the limit
(monotonic) temperature beyond which the beam does not
experience snap-through. An alternate method that can be used
in obtaining the snap load and the monotonic temperature for
shallow arches is presented in [29], which shows a very good
comparison with the results obtained in this paper.

We also perform a study on the effect of beam width and
thickness on the snap-through load and the lower bound tem-
perature. The study shows that varying the beam width (b) for the

same beam thickness (h) does not influence the lower bound
temperature; the snap-through load, however, increases linearly
as the beam width increases (Fig. 10). As we vary the beam
thickness, the snap-through load and the lower bound tempera-
ture are both higher for thicker beam (Figs. 11 and 12).

The pseudo-arc-length solution sometimes jumps from the
equilibrium path that shows the expected symmetric deformation
of the beam (Fig. 13) to another path where the beam deforms
asymmetrically (Fig. 14). This asymmetric buckling mode has
been previously discussed [5]. While the second buckling mode is
negligible if the initial curvature is small enough [27], this mode
clearly cannot be neglected for large initial beam curvatures.

Nevertheless, a unique lower bound on instability for a given
beam and load pattern can still be established if the second mode
only occurs above the monotonic temperature. If the entire
unstable region itself is eliminated from the static solution path
at the monotonic temperature – including the higher buckling
modes – then the lower bound on instability is unique for a given
load pattern and initial member shape. No static simulation that
we conducted contradicted this conjecture, and dynamic simula-
tion results indicated that higher modes tend to be activated at
higher temperatures but disappear as temperature is lowered,
suggesting that the lower bound is in fact unique.
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3.1. The monotonic temperature and the energy derivative tests

The coincidence of the limit point of the load–deflection curve
at the monotonic temperature with the center point of the graph
suggests that there is something special about this point, and
inspection of the graphs suggests that this point is likely the
inflection point of the curve (Figs. 15 and 16). Numerical evalua-
tion of the derivative @2P=@d2 confirms this. Note that these
results are obtained through numerical approximation, therefore
the coincidence points are not exact. However, we prove through
analytical studies that this hypothesis holds for a simple case [26].
In the case of the symmetric point-loaded beam, we can construct
a straightforward physical explanation of the existence of this
center point that will help guide our understanding of more
general load cases and geometries.

If the beam stays symmetric about the midpoint, the slope of
the beam at the midpoint must always be horizontal, and by
equilibrium the axial internal force at the midpoint must be equal
to the horizontal reaction force at the supports. We intuitively
expect that the unstable configuration with the maximum hor-
izontal reaction force is the maximally unstable configuration,
that is, the unstable configuration that would move to a stable
configuration with the maximum possible kinetic energy relative to
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all other unstable configurations (if the beam were initially held
perfectly fixed at this configuration and then released).

The maximum horizontal reaction does coincide with the
center point of the graphs (Fig. 17), indicating that the center
point corresponds to the maximally unstable configuration. This
does not mean that the horizontal reaction must be less than or
equal to zero at the monotonic temperature in order to avoid
instability, as one might assume: Fig. 17b shows that the max-
imum horizontal reaction can still be compressive at the mono-
tonic temperature.

The center point is a function of the specific boundary value
problem that we chose to explore. We would like to develop a
more general test to determine the maximally unstable config-
uration for problems where the load–deflection curve may not be
so well-behaved. The following heuristic argument will point us
toward such a test. For this particular problem, the external work
can be computed as the integral of the product of the concen-
trated load P(d) and the deflection at the midpoint d.

The second derivative of energy gives the standard static
stability test, while the third derivative of energy gives new
information that should locate the center point. The third deri-
vative of energy allows us to suggest a mathematical definition of
the maximally unstable configuration and the monotonic tem-
perature. Since the value of @2E=@d2 can be considered a measure
of the degree of instability present in the system, we would expect
that a point where its derivative @3E=@d3 is zero would be an
instability extremum that is local to the unstable region. The
maximally unstable configuration would be the instability extre-
mum in the range where @2E=@d2o0. If we are able to shrink this
range by lowering the temperature, then in the limit where the
unstable domain shrinks to zero we have both @3E=@d3 ¼ 0 and
@2E=@d2 ¼ 0 at the same configuration. The temperature that
generates this configuration and satisfies these conditions is the
monotonic temperature. In other words, the temperature that
shrinks the unstable region to a point, for which the maximally
unstable (@3E=@d3 ¼ 0) and the minimally stable (@2E=@d2 ¼ 0) con-
figurations are necessarily one and the same, is the monotonic
temperature. Note that this is similar to the use of higher
derivatives in continuation methods [22], though some simplifi-
cations of these more general (and computationally expensive)
techniques may be possible for thermomechanical problems, as
discussed below.

The energy Eint is obtained from the finite element code, and
its numerical derivatives can be approximated by simple differ-
ence formulas. We use this data to test the above hypothesis and

we do find that the third numerical derivatives of energy are zero at
the center point, and the second derivative of energy is zero at the
same point for the monotonic temperature (Fig. 15). This observa-
tion holds for beams of significantly different curvatures (Fig. 16).

For the case of the distributed load (Fig. 2b), a global center
point no longer exists (Fig. 18). The curves for lower temperatures
possess a center point but the curves at elevated temperatures do
not pass through it. Similar to the case of the concentrated load,
the curved beam acts like an arch under distributed load, resisting
primarily through axial stiffness rather than through weaker
flexural stiffness. However, this ‘‘arch’’ is not geometrically
perfect and suffers from local flexural buckling (Fig. 20a–c) at
load values below those achieved in the case of the concentrated
load.

These higher buckling modes may deflect upward at the
midpoint even as global stability is lost, so we can no longer
assume that @P=@d¼ 0 indicates a snap-through point, at least at
elevated temperatures. Similarly, @3E=@d3 ¼ 0 does not occur in
the distributed load case at high temperatures and can therefore
no longer be related to the maximally unstable configuration as it
can in the concentrated load case. Nonetheless, the energy
derivatives are still zero at the monotonic temperature (Fig. 19).
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The distributed load case reinforces the earlier observation
that the value of the monotonic temperature depends on the pattern
of applied load: for the R¼2438.4 mm beam, the symmetric point
load leads to a monotonic temperature of DT ¼"22 K, while for
the distributed load case the monotonic temperature is approxi-
mately DT ¼"28 K. The decreased monotonic temperature for the
distributed load case indicates that it is possible to find a loading
such that a ‘‘worst-case’’ monotonic temperature is obtained and
a lower bound on the thermoelastic instability for all possible
loadings of a system is established. This requires the solution
of an inverse problem to determine the worst-case loading,
which entails more complexity than is typically worth the effort,

especially if the actual load patterns a structure is subject to can
be known in advance with reasonable certainty. This concept is
not developed further in this paper, and all monotonic tempera-
tures reported are limited to the specific load cases considered.

In all these examples, due to symmetry, the derivatives with
respect to d (the midpoint deflection) provide clear information
about the stability of the system. In general, there will not be a
simple line of symmetry that will allow us to obtain meaningful
information, as is apparent from the higher buckling mode load–
deflection curves in Fig. 20. It would be preferable to develop an
analytical test for the third derivative of energy that will let us
circumvent the process of taking numerical derivatives entirely
and allow us to determine the monotonic temperature for any
given system.

Before assuming that the monotonic temperature obtained
from static simulations is truly effective in eliminating snap-
induced vibrations, we must first demonstrate that it eliminates
snap-through in dynamic systems. The next section is devoted to
establishing the validity of generalizing from the static, mechan-
ical-only solution to the dynamic, thermomechanically coupled
case. Then, we outline a test for establishing the monotonic
temperature for arbitrary loading and member geometries in
the final section.

4. Dynamic simulation of snap-through

In order to determine if the monotonic temperature estimated
via static simulations successfully eliminates snap-through,
dynamic simulations are conducted. We present here the results
obtained for one beam only (R¼1828.8 mm), with the same
reference temperature Yref ¼ 300 K used in the static simulations.
Consequently, the beam number is no longer mentioned in the
figure captions. This particular beam has a large initial curvature
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Fig. 20. Beam 5 (R¼2438.4 mm) with distributed load: (a) DT ¼ 0 K, (b) DT ¼ 5 K and (c) DT ¼ 10 K.
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Fig. 19. Beam 5 (R¼2438.4 mm). Energy derivatives are still zero at monotonic
temperature despite the absence of a global center point.
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but still possesses an estimated monotonic temperature that
could be easily obtained in the laboratory (DT ¼"38 K relative
or Y¼"11 1C=12 1F absolute). A concentrated force is applied at
an effectively quasi-static rate at midspan and then held constant
at a fixed target value greater than the static snap-through load Ps.
The target load is P¼2.0 N for temperatures below T¼30 K, but
the increase in snap-through load at increased temperature
necessitated higher target loads of P¼ 2:5 and 3.0 N for T¼50
and 100 K respectively (Fig. 21).

Initial static simulations were conducted to obtain the ther-
mally deformed initial configuration of the beam at each target
temperature prior to dynamic simulation (Fig. 22). The initial
temperature was applied as a perfectly uniform nodal initial
condition and the surfaces of the beam were treated as perfectly
insulated. Though this zero-heat-flux boundary condition is not
feasible in an experimental setting, it allows us to isolate the
temperature change due to thermomechanical coupling in our
simulations. Purely mechanical dynamic simulations [20] had
earlier indicated that a problem-specific critical time step of
Dt¼ 10"4 s or smaller must be used for accurate modeling of

snap-through. Values of Dt above this critical value could lead to
spurious solutions that are clearly non-physical but nonetheless
numerically converged.

The monotonic temperature estimated from static simulations
successfully eliminated snap-through from dynamic simulations
at quasi-static load rates. The maximum amplitude of displace-
ment does clearly approach zero as the temperature approaches
the monotonic temperature, and effectively reaches zero for
DT ¼"50 K (Fig. 23). The maximum displacement approaches a
limit as the temperature increases; however, the maximum
kinetic energy over all time values continues to increase linearly
as the temperature increases (Fig. 24). This ‘‘excess’’ kinetic
energy is present in asymmetric deformation modes not apparent
from examination of the midpoint displacement alone.

Note that the ramp load continues to increase prior to reaching
a constant value after snap-through, hence, the centerline of the
vibrations moves downward on the plot prior to t¼2.0 s (Fig. 26).
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Fig. 21. Ramp load target values.
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This component of the vibration must be filtered out in order
to determine the amplitudes of vibration correctly. This was
done by fitting a sixth-order polynomial to the post-snap mid-
point displacement time history data and finding the value
of the maximum difference between the smooth curve and the
displacement.

The y-direction displacement at the midpoint is represented in
Figs. 25–27 as a function of time for various initial temperatures
and the static simulation results are superposed at the same scale.
Thermoelastic damping is clearly apparent in these plots; by
comparison, purely mechanical simulations of snap-through
using the trapezoidal Newmark method showed no damping of
the post-snap vibrations, as is expected for this energy-conserving
time integration algorithm. Visual inspection of the graphs also
indicates that the large-amplitude vibrations characteristic of
snap-through are strongly attenuated below the monotonic
temperature of DT ¼"38 K (Fig. 26), dropping to nearly zero at
DT ¼"50 K (Fig. 27).

A measure of the asymmetry of vibration can be constructed
by plotting the difference between the y-direction displacement

w(x) at the points x¼ L=4 and x¼ 3L=4. This difference will be
zero if the vibration is symmetric, or otherwise can give an
estimate of the frequency and magnitude of the asymmetric
vibration. For DT ¼ 0 K and below, the post-snap vibration
remains perfectly symmetric for the beam considered. For
DT ¼ 30 K, the post-snap vibration is initially symmetric, but after
the load reaches a constant value the response develops an
antisymmetric vibration (Fig. 28). This vibration damps out
relatively quickly at DT ¼ 30 K, but at DT ¼ 50 K a similar mode
of vibration is present at a higher amplitude and for a longer
duration (Fig. 29). For DT ¼ 100 K, the beam buckles asymmetri-
cally immediately prior to the static snap-through load and
remains in a fully asymmetric mode after snap-through (Fig. 30).

Qualitatively, the DT ¼ 30 K and DT ¼ 50 K cases combine a
symmetric mode (Fig. 31a) and an extremely low frequency
asymmetric mode (Fig. 31b). The DT ¼ 100 K case buckles asym-
metrically prior to snap-through (Fig. 32a) and remains in a high-
frequency asymmetric mode that oscillates at an angle to the
vertical following buckling (Fig. 32b). As this asymmetric mode is
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Fig. 25. Displacement at DT ¼ 0 K.
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damped, a new mode emerges (following t¼3.4 s) similar to the
low-frequency asymmetric mode encountered at DT ¼ 30 K and
DT ¼ 50 K.

Unloading the beam from an initially stationary deformed
configuration reveals that the vibration about the initial unde-
formed configuration is of significantly lower amplitude than the
vibration about the deformed configuration. Although the initial
post-snap unloading response begins as a symmetric vibration, it
develops a small asymmetry that quickly grows in magnitude.
While the initial transient mode shape is essentially similar to the
low-order symmetric mode of the loading response (Fig. 33a),
inspection of the deformed configurations reveals that the asym-
metric mode behaves like a low-frequency ‘‘wave’’ reflecting back
and forth between the supports (Fig. 33b). Fig. 34 shows the
loading and unloading responses.

These various modes interact non-linearly in the finite-defor-
mation model, and the resulting transient behavior can become
difficult to quantify, especially as higher modes are activated and
the post-snap motion increases in complexity. However, the
higher modes diminish with decreasing temperature and even-
tually disappear at the monotonic temperature, making the
monotonic temperature a solid point of reference in an otherwise
convoluted post-buckling regime.

The monotonic temperature also holds for the distributed load
case. The R¼2438.4 mm beam displays the same sort of asym-
metric buckling prior to the static snap-through load at DT ¼ 0 K
under distributed loading that is seen at DT ¼ 100 K for the
R¼1828.8 mm beam under concentrated loading. At the esti-
mated monotonic temperature nonetheless, post-snap vibrations
are attenuated as effectively in the distributed load case as they
are in the concentrated load case (Fig. 35).

There are some caveats on the generality of the monotonic
temperature. The softening response seen in the static solution
paths even for temperatures below the monotonic temperature

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−4

−3

−2

−1

0

1

2

3

4

Time [s]

w
 (L

/4
) −

 w
 (3

L/
4)

 [m
m

]

Fig. 29. Low-frequency asymmetric vibration sustains longer for DT ¼ 50 K.
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Fig. 30. Beam buckles asymmetrically prior to snap-through at DT ¼ 100 K.

Fig. 31. Mode shapes for DT ¼ 30 and 50 K: (a) symmetric and (b) asymmetric.

Fig. 32. DT ¼ 100 K: (a) initial asymmetric buckling and (b) asymmetric ‘‘side-
ways’’ post-buckling mode.

Fig. 33. Modes at unloading for DT ¼ 0 K: (a) symmetric and (b) traveling wave.
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can still lead to snap-like behavior if the loading rate is high
enough to force the system to dynamically jump off the static
solution curve as the system softens with increasing load. More
generally, the system must be dissipative for the temperature to
remain below the monotonic temperature. This is true in our case,
but it is no longer valid if body heat sources or applied surface
heat fluxes are present. We are therefore limited to saying that
the monotonic temperature provides a lower bound below which
snap-through will never occur at any applied load level if the
loading rate is effectively quasi-static and the system is
dissipative.

The monotonic temperature estimated from static simulations
is not perfectly precise; it does not completely eliminate the
oscillations even for dynamic systems with effectively quasi-
static loading. Some of these errors are due to the simple
approach that was undertaken to find this temperature, where
the monotonicity of the curve was determined only approxi-
mately. Another source for the discrepancy is due to the physical
fact that the ramp loading can never be truly quasi-static in a
dynamic simulation. The amplitude of vibration will go to zero
nearer the monotonic temperature (refer to Fig. 23) if the loading

rate is decreased, but there will always exist some small dynamic
jump as the system approaches the limit point on the static load–
deflection curves.

One additional practical observation can be made. We have
modeled the curved beam with an edge that is free to move in the
z-direction (out-of-plane) between the fixed supports. In many
practical engineering applications, such as stressed-skin mono-
coque aircraft construction, the z-direction will be restrained as
well, and we expect this additional boundary condition to have a
stabilizing effect. These additional boundary conditions increase
the snap-through load (Fig. 36) as well as the monotonic tem-
perature itself (Fig. 37). The monotonic temperatures obtained
from the static simulations without these boundary conditions
are therefore conservative values relative to systems that include
such constraints.

Note that, in the static simulations, we have omitted heat
conduction and treated temperature as a purely mechanical
expansion or contraction of the material, which provided a
valid estimate of the snap-free monotonic temperature for the
dynamic thermomechanically coupled case. This analogy between
mechanical strain and thermal strain indicates that an applied
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Fig. 34. Beam 3 (R¼1828.8 mm). Asymmetry of loading and unloading response
at DT ¼ 0 K.
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Fig. 35. Beam 5 (R¼2438.4 mm). Static monotonic temperature estimate holds for
distributed load case.
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Fig. 36. Beam 3 (R¼1828.8 mm). Full z-direction edge boundary condition
increases snap-through load.
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Fig. 37. Beam 3 (R¼1828.8 mm). Full z-direction edge boundary condition
increases monotonic temperature.
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mechanical prestress will have a mechanical effect similar to
lowering the temperature. For example, for the unloaded
R¼1270 mm beam, the reaction at the supports has no vertical
component and has a horizontal component of Px ¼ 9:42 N at the
monotonic temperature DT ¼"82 K; the horizontal reaction is
Px ¼ 15:4 N for DT ¼"100 K. Given the out-of-plane depth of
d¼28.7 mm and beam thickness t¼1.27 mm, and assuming a
uniform stress over the cross-section, the axial stress in the beam
is therefore 0:4225 MPa for DT ¼"100 K, which is only a minute
fraction of the yield stress of sy ¼ 250 MPa for A36 structural
steel. Although DT ¼"100 K is clearly an unrealistic temperature,
s¼ 0:4225 MPa is a perfectly realistic prestress. Consequently, an
applied mechanical prestress will have a mechanical effect similar
to lowering the temperature, and therefore we could eliminate
quasi-static snap-through by applying a purely mechanical pre-
tension sufficient to achieve a tensile strain identical to or greater
than that produced by the monotonic temperature. Moreover, it is
also possible to apply additional initial strain sufficient to cancel
the effects of thermal expansion, so that a heated beam can be
‘‘snap-proofed’’ for temperatures below a given elevated target
temperature.

In practical aerospace applications, significant prestress is
introduced to thin structural members to provide increased
structural stiffness, independent of any thermal considerations.
This prestress is sufficient to introduce tensile strains equivalent
or greater than those introduced by the monotonic temperature,
as is apparent from the above example. It is therefore unlikely
that typical aerospace structures will experience snap-through
under standard operating conditions. However, as the operating
conditions of the structure become more severe, as in hypersonic
flight, much larger thermal loads can be expected. Additional
mechanical pre-tension could therefore prove useful in providing
additional protection against snap-through in aerospace struc-
tures in extreme operating environments, although more research
would be required to determine the effectiveness, applicability,
and limitations of this approach.

5. Maximum instability and bounds on snap-through

In the previous sections, we have established that (1) the
monotonic temperature represents a lower bound on static
instability in curved beams subject to snap-through, and (2) for
the simple symmetric beam with a concentrated load, the second
and third derivatives of energy with respect to the midpoint
displacement are both zero at the snap-through point at this
temperature. We surmised that the unstable region shrinks as the
temperature is lowered until it becomes a point at the monotonic
temperature, and that at this point the minimally stable config-
uration ð@2E=@d2 ¼ 0Þ and maximally unstable configuration
ð@3E=@d3 ¼ 0Þ are identical. This shrinkage of the unstable region
to a point as temperature is lowered is illustrated conceptually in
Fig. 38. We also observed that, although multiple modes may
exist corresponding in some cases to multiple paths within the
unstable region (Fig. 39), in static simulations these modes tend
to disappear as the monotonic temperature is approached.

These observations suggest a mathematical definition of the
monotonic temperature. We do not attempt to prove the follow-
ing conjectures, but the simulation results support them. If we are
able to shrink the unstable region along the equilibrium path of
our system by altering some parameters (such as temperature),
then the configuration where the critical parameters are such that
snap-through no longer occurs is exactly the point where the
minimally stable configurations at the boundaries of the unstable
region coincide with the maximally unstable configuration. Such
conditions should therefore give us a set of equations that provide

a bound of the domain of unstable behavior. Without attempting
to prove them, we state here these conditions.

Conjecture. Let d be the displacement field in a continuum, and let
p be a vector of bifurcation parameters, which control the size of the
unstable region. Assume that the system under consideration has
only one unstable region. Let G, A, B be the first, second and third
derivatives of the energy. The unstable region ceases to exist for the
particular configuration ðdn,pnÞ at which, for all virtual displacement
fields dd, the functionals G, A and B are null: Gðdn,pn,ddÞ ¼ 0,
Aðdn,pn,ddÞ ¼ 0, and Bðdn,pn,ddÞ ¼ 0.

If we use a finite element approximation of the functionals
from a continuum problem, we obtain the version of the above
conditions in matrix form: Gðdn,pnÞ ¼ 0, det Aðdn,pnÞ ¼ 0, and
det Bðdn,pnÞ ¼ 0. In this discretized form, G is a vector (the
residual vector in finite element methods), A is a second-order
tensor (the stiffness matrix), B is a third-order tensor, and dn is a
vector (of nodal displacements).

A simple non-linear Timoshenko beam model demonstrates the
utility of these conjectures and also demonstrates why limited-
deflection models, such as the von Karmann equations, are a priori
incapable of determining the monotonic temperature. The inter-
ested reader is referred to [26] for the detailed derivation corre-
sponding to the beam model. Unlike the fully non-linear equilibrium
equations, the third variational derivative of the linearized beam
equations is identically zero. In taking the Taylor series approxima-
tion of the fully non-linear Timoshenko beam equilibrium equations
we have lost information, and, as discussed in [26], the information
we have lost from the third derivative of energy is exactly the
information we require to be able to pinpoint the non-trivial snap-
free configuration that exists at the monotonic temperature. The von
Karmann equations therefore do not disclose the existence of the
non-trivial solution precisely because the information that is needed
to determine it has been omitted a priori.
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Fig. 38. Conceptual illustration of lower bound.
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Fig. 39. Multiple paths within the unstable region.
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6. Conclusions

We demonstrated the existence of a non-trivial curved beam
configuration and a corresponding critical temperature, lowered
with respect to the reference temperature, that eliminates the
occurrence of dynamic snap-through under quasi-static loading
rates. This monotonic temperature can be estimated from static
solution paths with reasonable accuracy, even for beams of large
initial curvature. An analytical test based on the third variational
derivative of the energy that could be useful in determining the
monotonic temperature for members of general geometry and
load patterns is also suggested. The failure of limited-deformation
thermal beam and plate models such as the von Karmann equations
to disclose the existence of a non-trivial snap-free solution is shown
to be a consequence of the omission of information about the third
variational derivative of energy from these lower-order theories.

The analogy between purely mechanical contraction and
thermal strain that holds for these numerical experiments sug-
gests that an applied mechanical prestress that introduces an
initial strain equivalent to the strain induced by the monotonic
temperature eliminates the possibility of quasi-static snap-
through in beams of large initial curvature. Increasing the initial
prestress in thin-walled structures using values determined from
this procedure could therefore provide a simple method of
protecting against large amplitude snap-through vibrations
encountered in by aircraft and spacecraft in extreme operating
environments. Although this method would introduce additional
stresses into the supporting members and therefore has limita-
tions depending on the requirements of the structure, it is simpler
than other methods that have been proposed in the literature
[30]. Further research would be needed to determine the poten-
tial effectiveness and practical limitations of this proposed
method of alleviating dynamic snap-through.
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a b s t r a c t

Aircraft structures operating in severe environments may experience snap-through, causing the
curvature on part or all of the structure to invert inducing fatigue damage. This paper examines the
performance of beam and continuum nonlinear finite element formulations in conjunction with several
popular implicit time stepping algorithms to assess the accuracy and stability of numerical simulations of
snap-through events. Limitations of the structural elements are identified and we provide examples of
interaction between spatial and temporal discretizations that affect the robustness of the overall scheme
and impose strict limits on the size of the time step. These limitations need to be addressed in future
works in order to develop accurate, robust and efficient simulation methods for response prediction of
structures encountering extreme environments.
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1. Introduction

Curved beams or panels can often be found as components of
complex structures in civil, mechanical, and aerospace applications.
They may experience snap-through causing the curvature on part or
all of the structure to invert due to a large inward loading (Fig. 1(a))
caused by extreme loading conditions [1]. When snap-through
happens, the load–deflection diagram presents a jump, e.g., from
point B to point C, as shown in Fig. 1(b). In some cases, when the load
is reduced, hysteresis is observed: the structure will snap-back to its
original configuration but on a different path (represented by the
jump from point D to point A in the same figure).

Snap-through is characterized by large nonlinear deformations,
changes in the system stability and large stress reversals, which
accelerate fatigue damage. Since no analytical solutions for general
systems with snap-through exist, numerical models that can capture
these phenomena are needed in order to predict the fatigue life of the
structure. Among the numerical techniques, the Finite Element
Method (FEM) provides the most generality and can be applied to
systems with arbitrarily complex geometries. This paper analyzes the
performance of several finite element formulations (2D and 3D)
and the stability of the time-stepping schemes in simulating a
curved beam undergoing snap-through: we identify the important
features that affect the numerical accuracy and robustness and the
region where the schemes are stable for such simulations.

The snap-through of curved beams or shallow arches has been
studied analytically for particular cases by numerous authors,
including Murphy et al. [2], Virgin [3], Bradford et al. [4], and Plaut
and Virgin [5]. Snap-through can also be studied qualitatively
using a truss system [6]. Simplifying assumptions are usually
needed in finding the analytical estimates. While we are paying
the price of the lack of physical intuition by using the complex
FEM, we often need to do so in order to use more general analysis
techniques that allow for complex effects to be captured. There-
fore, we test here the performance of this method when applied
to a simple curved beam structure (geometry and properties
introduced in Section 2). This structure is representative since it
exhibits the type of phenomena we wish to study (snap-through)
but simple enough to allow for comparisons with solutions
obtained with analytical methods as well.

In this paper, the numerical simulations are performed with the
Finite Element Analysis Program (FEAP), a research code that
includes most commonly used finite elements and solvers and
provides a reliable framework for developing and implementing
new user formulations [7]. The factors taken into consideration
in this study are (1) the time-stepping algorithm, (2) the element
type, and (3) the size of the time step. The element formulations
and the time-stepping algorithms discussed are either available
from the standard FEAP distribution or implemented as user
subroutines. The main criterion used to verify the robustness of
the results is the energy conservation throughout the simulation.

For discretization, 2D straight beam elements and 3D solid
linear and quadratic elements are used. All formulations account
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for large deformations. The 2D beam elements utilized are (1)
beam elements without shear deformation with large displacement
and small rotation (2nd order theory) with cubic interpolation, and
(2) beam elements with shear deformation formulation and large
displacement and large rotation that can consider inelastic behavior
for bending and axial effects but retain linear elastic response in
the transverse shear terms [7]. The 3D solid elements used are
linear (8-nodes) elements with displacement, mixed (B-bar), and
enhanced formulations and quadratic (27-nodes) elements with
displacement formulation. Unlike the structural elements, e.g.,
beams, the continuum (3D solid) elements do not include a built
in kinematic assumption. This characteristic makes them suitable
for consistent incorporation of other effects, such as thermomechanical
coupling in future studies. Note that in the current study, no
coupling, and no material or boundary nonlinearities are included.

Conventional approaches in the stability analysis of structures
often make use of static considerations, but in fact, even when
the loads are applied statically, buckling and snap-through are
inherently dynamic processes and a full description of the
structural behavior can be obtained only through a dynamic
analysis [3]. Numerical simulations of such phenomena require
access to stable time-stepping schemes and in general to robust
simulation environments.

Unfortunately, due to the kinematic assumptions incorporated
in the structural elements, the use of these elements coupled with
the time-stepping integrators is prone to numerical difficulties that
affect the accuracy of the results as shown in Section 4. Numerical
instabilities mask the true physical behavior rendering the
structural response prediction inaccurate.

An important component of the simulation environment is the
time-stepping scheme. We examine here the common choices for
structural mechanics simulations: (1) the traditional Newmark
integrator [8] and (2) energy–momentum conserving algorithms.
The Newmark method is the most widely used time integrator in
the area of structural analysis. For certain combinations of para-
meters, it is unconditionally stable for linear problems. However,
its stability is not guaranteed for nonlinear problems. The tradi-
tional time-stepping algorithms developed for structural dynamics
applications usually perform well for linear problems. In the non-
linear regime, however, numerical instabilities appear due to the
energy increase of the discrete system. Hence, energy–momentum
schemes were developed to overcome the lack of conservation [9].
These schemes belong to a class of algorithms designed to satisfy
various conservation laws by construction. The energy–momentum
algorithms used are (1) the algorithm based on the work by
Simo and Tarnow [10], Simo et al. [11], and Gonzalez [12] and
(2) a composite algorithm based on the trapezoidal rule and the
three point backward Euler proposed by Bathe [13] that is stable
for large time steps. These algorithms will be referred as
conserving A and conserving B, respectively, in the rest of this
paper. Many authors used conserving A to solve various types of
problems [14]. In a recent work, Garikipati et al. [15] used this
algorithm to model growth in biological tissue. Bathe [13] showed
that the conserving B algorithm, which is incorporated in the

commercial FEM software ADINA 8.7, is able to solve a specific type
of problem where the Newmark algorithm is unstable and does not
conserve energy and momentum. Although the conserving B
scheme allows us to use larger time steps, interactions between
the time-stepping schemes and the spatial discretizations might
still occur when structural elements are used.

This paper is organized as follows. Section 2 describes the
representative structure used throughout the paper. Section 3
compares the results of the static analyses obtained using different
element types and formulations. Section 4 analyzes the numerical
results of the nonlinear dynamic simulations of a curved beam
undergoing snap-through. Various time integrators and element
types and formulations are used. A summary of our findings is
presented in the concluding section.

2. Representative structure

The representative system discussed in this paper is a curved
beam that undergoes snap-through under a concentrated load.
The geometry of the beam is shown in Fig. 2. The beam is
symmetrical with an angle h = 5.674! at the supports. The thicker
lines in the figure represent the parts of the beam that are
clamped; their horizontal length is Lc. The free portion of the beam
has a horizontal projection Lh. The total horizontal projection of the
beam, including the clamped parts is L = 362.204 mm. The beam
can be considered as a thin beam and has a rectangular cross
section with depth d much larger than the thickness t. Fig. 3 shows
the 3D representation of the beam.

The dimensions of the beam are listed in Table 1 and Table 2
lists the material properties of the structure. Without loss of
generality, the type of load used throughout this paper is a point
load applied at the center of the beam.

3. Static analysis

In this section we study the effect of the type of elements and
formulations on the accuracy of the results in quasistatic
simulations. Based on these preliminary results, the options that
are less accurate in the static analysis are eliminated, and as a
result a decision regarding the best elements to be used in the
dynamic analysis can be made.

All simulations presented later in this paper are performed with
meshes that ensure spatial convergence. Fig. 4 shows a mesh

P
(a) (b) d

P

A
B

C
D

Snap- 
Through

Snap- 
Back

Fig. 1. Snap-through buckling of shallow structures: (a) initial and post-snap
configuration, (b) load–deflection curve.
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Fig. 2. Geometry of the structure. A curved beam clamped at the supports.
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convergence study for 3D solid quadratic elements (27 nodes). The
reference number of elements is taken to be 3072 elements along
the arch. The coarsest mesh utilized has 6 elements along the arch
and gives a relative error of 98.2% in estimating the displacement
after snap-through. Based on this study, we use a mesh of 200
elements along the arch to ensure less than 1% relative error. A
similar study was performed for discretization with beam
elements [16].

The structure is symmetrical, but since nonsymmetrical
configurations after bifurcation exist under certain conditions, all
simulations were performed on the full beam.

3.1. Incremental loading using the Newton–Raphson scheme

The first static analysis is performed with a load control
algorithm and uses the Newton–Raphson iterative method. An
increasing point load is applied at the midspan of the beam.

The load–deflection curves for the static analyses show that the
2D beam elements with and without shear deformation, the 3D
solid linear elements with enhanced formulation, and the 3D solid
quadratic elements estimate similar snap-through loads (Fig. 5),
Pcrit = 1.51 N. However, the 3D solid linear elements with displace-
ment and mixed (B-bar) formulations experience locking;
enhanced strain formulations can be used instead to avoid this
problem while keeping the elements linear, but the use of higher
order elements provides the same algorithmic improvement
without the added computational burden (the enhanced elements
require a static condensation step and inversion in every element)
and without the increased storage requirements (additional local
variables inside every element). Therefore, the 2D beam elements
and 3D solid quadratic (27 nodes) elements will be the elements
used in the transient analysis. Note that there is no warping
observed in the simulation that uses 3D solid quadratic elements.
Therefore the use of beam elements is acceptable even though they
cannot capture warping. Also note that no torsional deformation is
observed when the discretization uses 3D solid quadratic
elements.

We compared the values of the buckling load and the displace-
ment after buckling obtained from the static analysis with the
analytical approximation proposed in Bradford et al. [4]. They have
shown that these values provide reasonable approximations for
the symmetric buckling of fixed arches. From the comparison, we
obtained a relative difference of 4.93% for the buckling load and
a relative difference of 5.47% for the displacement after buckling.

Simpler models (link systems) were also used for qualitative
comparisons [17] and an extensive investigation of the post
snap-through behavior of the curved beam including identification
of solutions with non-symmetric deformation response and
transient responses under a variety of forcing patterns is presented
in [18].

3.2. Hysteresis analysis

The hysteresis analysis illustrates the path-dependence
behavior. The structure is loaded with a concentrated force (at
the middle of the beam) increased up to a value slightly larger than
the snap-through value and then it is unloaded with the same
rate. The results under a load controlled scenario confirm that the

Fig. 3. 3D representation of the geometry of the structure (undeformed and post-
snap configurations).

Table 1
Normalized dimensions of the curved beam.

Normalized dimensions Values

Bottom radius/L 5.058
Free horizontal length (Lh)/L 0.8415
Clamp horizontal length (Lc)/L 0.07925
Depth (d)/L 0.035
Thickness (t)/L 0.0014
Rise-to-thickness (H/t) 17.67

Table 2
Material properties.

Properties Values

Young’s modulus (N/mm2) 206,843
Poisson’s ratio 0.28
Density (N s2/mm4) 7.83 ! 10"9

Fig. 4. Mesh refinement study for 3D solid quadratic elements.
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structure experiences hysteresis causing the equilibrium path to be
dependent on the history (Fig. 6).

3.3. Path following analysis using an arclength method

In order to obtain the whole equilibrium path, including the
unstable configurations, an arclength algorithm based on
Schweizerhof and Wriggers [19] is used. The method controls
neither the load nor the displacement but traces the equilibrium
configurations, both stable and unstable (Fig. 7), with increments
in the length of an arc on this curve. Even though unstable paths
are hard to capture experimentally, having access to the whole
solution space provides significant insight into the system
behavior. If incremental loading is used, the system advances to
point 1 then snaps through to point 2. If the load is increased, it
will travel to point 3. When the unloading starts, the system will
travel back from point 3 to point 2 then to point 4 before snapping
back to point 5 and then returning to the original (undeformed)
position.

Static analyses provide some information, such as the load level
at which snap-through and snap-back occur for specific material
properties and geometry. However, a dynamic analysis is required
to capture the transient behavior after the snap-through occurs.

4. Transient analysis

This section analyzes the performance of time integrators when
applied to transient problems involving snap-through, i.e., the
dynamic jump of the system from a ‘‘quasi static’’ configuration
to oscillations about a remote equilibrium configuration.

The concentrated force applied at the midspan of the curved
beam ramps-up to some value above the snap-through load and
then remains constant (Fig. 8).

In the following simulations, the choice of finite elements used
to discretize the system is based on the preliminary results of the
previous section: 2D beam elements with and without shear
deformation and 3D solid quadratic (27 nodes) elements.1

Due to the snap-through phenomenon, the structure undergoes
changes in the stability behavior. The study of the accuracy and
robustness of the numerical methods for transient simulations of
structures that are likely to traverse unstable regimes raises the
following issues: (1) the existence of a critical time step for the
stability of the numerical integrator, (2) the introduction of
unwanted artificial numerical damping, and (3) the lack of exact
energy conservation and other numerical pathologies. These issues
are discussed in detail in the rest of this section.

To quantify the robustness of the numerical method, one of the
measures used is the total energy. The values of the algorithmic
parameters utilized for the Newmark and the energy–momentum
schemes ensure energy conservation for linear problems. We will
use the deviation from this norm as a measure of the loss of
numerical robustness and of the increase in the likelihood of the
numerical nature of the instability (if instability is encountered).

4.1. Critical time step

We first present the numerical studies performed in order to
identify the critical time steps for both the Newmark method
and the conserving A algorithm for different finite element
formulations (2D beams and 3D solids). The critical time steps
are identified by systematic numerical experimentations. We also
present simulation results obtained using the conserving B
algorithm, where we will show that there is no critical time step
(the simulation does not ‘‘blow up’’) but accurate results can be
obtained only for small time steps.

Simulations with 2D beam elements without shear may con-
verge even for Dt larger than the critical time step. However,
for each Dt, a different structural behavior is identified. This
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Fig. 8. Load for transient analysis.

1 All elements account for large deformation.
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observation clearly suggests that even though the nonlinear solver
converges, this is not necessarily a solution of the physical system but
rather a numerical artifact. An example of such unstable solution
(Dt = 10!2 s) suggests that the structure undergoes intermittent
snap-through before it settles into periodic oscillations around an
intermediate point that is neither the original configuration nor the
snap-through configuration (Fig. 9(a)). The total energy plot for this
simulation shows that the energy is not conserved; it increases
significantly when the response settles into oscillations about this
intermediate configuration (Fig. 9(b)).

The simulations using the 2D beam elements without shear
deformations are repeated with the conserving A algorithm
(Fig. 10(a)). The energy plot for an unstable time step also shows
that the energy increases rapidly at a certain point in the simula-
tion that corresponds to the time increment where the response
becomes unphysical (Fig. 10(b)). The total energy obtained in
simulations that converge to nonphysical solutions is much larger
when the conserving A scheme is used than when using the
Newmark method. This makes the identification of the unphysical
solutions much easier.

The result of a stable simulation shows that the structure expe-
riences periodic oscillations, which begin right after snap-through
occurs (Fig. 11(a)). Even though a stable numerical behavior is
exhibited, we observe that the numerical analysis provides a
damped response. This response is obtained from the Newmark
method with a combination of parameters that should have
precluded numerical dissipation, so clearly this damping is a
numerical artifact, as will be discussed in more detail in the next
subsection.

The transient simulation performed with 3D solid quadratic
elements and a stable time step shows periodic oscillations in
the post-snap response of the structure; the amplitude of oscilla-
tions stays constant in the region of constant load (Fig. 11(b)),
not showing the dissipation that appears when the 2D beam
elements without shear deformation are used in the simulation.

The critical time step obtained from systematic numerical
experimentations is summarized in Table 3. The preceding study
shows that the critical time step depends on the type of elements
used to discretize the structure. Studies performed using other
loading patterns show that these bounds also depend on the load
pattern used (results are not shown here).

Simulations performed using the conserving B scheme [20] are
numerically stable at large time steps. However, this scheme intro-
duces numerical damping, which affects the accuracy of the solu-
tions greatly when a large time step is used (Fig. 12(a)). When
small time steps are used (Fig. 12(b)), the solution matches the
results obtained using the Newmark method and the conserving
A algorithm.

4.2. Unwanted artificial numerical damping

The discussion presented in the previous section shows that the
2D beam element without shear deformation introduces artificial
numerical dissipation in the transient analysis of structures under-
going changes in stability for time steps smaller than the Dtcr. This
behavior is observed even though the algorithm used is supposed
to conserve energy, which suggests that there exists some
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Fig. 9. 2D beam without shear deformation; Newmark method; Dt = 10!2 s
(a) displacement, (b) total energy.
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Fig. 10. 2D beam without shear deformation; conserving A scheme; Dt = 10!2 s
(a) displacement, (b) total energy.
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correlation between the kinematic assumptions built into a
‘‘structural’’ finite element and the numerical stability and
conservation properties in the transient simulation when the
problem is highly nonlinear. (Note that the energy conservation
property is proven to hold in the discretized system for linear
problems, but does not hold for nonlinear problems.)

The transient analyses using 2D beam elements without shear
deformation exhibit more numerical damping for smaller time
steps for both the Newmark method and the conserving A algo-
rithm (Fig. 13). The responses obtained with the Newmark method
show more dissipation than those obtained with the conserving A
scheme. Therefore, in addition to the time step size, the amount of
dissipation also depends on the time integrator used in the analysis.
The relationship between dissipation and logDt is approximately
linear (Fig. 13 with log scale representation on the horizontal axis).
The dissipation might be due to the fact that the use of no-shear
beam formulations for dynamic problems leads to a discretized
system that is parabolic and consequently inadequate for wave

propagation studies [21]. It is therefore expected that the
Newmark method that is designed for hyperbolic and hyperbolic–
parabolic problems may encounter difficulties in the parabolic
case.

To isolate the possible cause of the artificial numerical damping
in analyses with 2D beam elements with shear deformation,
simulation of one other transient problem is performed; a curved
cantilever beam, essentially representing half of the representative
structure described in Fig. 2 that has the same properties and is
loaded at the free end with a concentrated force increased in the
first two seconds and then decreased to zero rapidly (Fig. 14).
Notice that snap-through is not exhibited here, reducing the
problem to nonlinear deformation/vibration only. In this problem,
the beam is discretized with 2D beam elements (with and without
shear deformation).

When the beam is discretized with 2D beam elements without
shear deformation, damping is also present in the case of the
curved cantilever beam. However, the damping is only noticeable
when the simulation time is long. Therefore, we can conclude that
snap-through aggravates the amount of the damping.

Comparison of the responses for Dt = 10!4 s obtained with 2D
beam elements with and without shear deformation shows that
the beam element with small rotation assumption and no shear
is clearly more rigid than the beam element with large rotation
and shear, both in the initial quasi-static loading phase and in
the amplitudes of the oscillations in the transient regime
(Fig. 15). Since the beam is very thin and flexible, the inclusion of

(a) (b)

Fig. 11. Displacement vs. time; Newmark method (a) 2D beam with no shear (Dt = 5 " 10!5 s), (b) 3D solid quadratic (Dt = 10!4 s).

Table 3
Bounds of the critical time step for different finite elements.

Element type and formulation Critical time step

2D beam element with shear deformation Dtcr # 10!4 s
2D beam element without shear deformation Dtcr # 5 " 10!5 s
3D solid quadratic (27 nodes) element Dtcr # 10!4 s

(a) (b)

Fig. 12. Displacement vs. time; 3D solid quadratic; conserving B method (a) Dt = 10!3 s, (b) Dt = 10!4 s.
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the shear effects should not bring significant changes to the results
and we suspect that the cause of this more rigid behavior is the
limiting assumption of small rotation.

4.3. Algorithmic conservation of energy

In addition to the existence of a critical time step and the intro-
duction of artificial numerical damping, the transient analysis of a
curved beam experiencing snap-through also raises several issues
concerning the conservation of energy of the system.

The analysis using 2D beam elements shows that the energy
conservation is not satisfied throughout the simulation. The total
energy plot for 2D beam elements without shear deformation
shows that the total energy is significantly larger (Fig. 16(a)) than
the total energy in the analysis with 3D solid quadratic elements
(Fig. 16(b)). The total energy includes the kinetic energy, strain
energy, and the work applied. Under the energy conservation
measure, the conserving A algorithm performs better than the
Newmark method. Simulations performed using the conserving B
algorithm clearly do not satisfy the conservation of energy;
artificial numerical damping is introduced into the system [20]:
the larger the time step, the larger the decrease in energy (Fig. 17).

Pathologies in the variation of energy also appear when 2D
beam elements with shear deformation are used for the spatial
discretization of the system. The results obtained from analyses
performed with the Newmark method (Dt = 10!4 s) for a system
discretized with 2D beam elements with shear deformation show
that the refinement of the mesh increases the energy of the system
(Fig. 18). Note that the energy does not change when a smaller
time step is used, showing that the increase in energy depends
only on the mesh refinement.

Further examination shows that as the mesh is refined, it is the
kinetic energy that changes significantly in magnitude while the
strain energy remains the same. This phenomenon is observed only
when the 2D beam elements with shear deformation capabilities
are used in the analysis. The analyses using 2D beam elements
without shear deformation and 3D solid quadratic elements show
no dependence of the kinetic energy on the level of mesh
refinement.

Several attempts were made to understand this behavior. A
closed-form solution based on the assumptions of negligible
displacement in the X direction and small rotation shows that
the kinetic energy for one element with length h and two elements
with length h/2 in one time step is the same, but once again, such
results no longer hold for large deformation [16].

Simulations performed on the curved cantilever beam used in
the previous subsection examined whether the increase in energy
appears in other transient problems solved with 2D beam elements
with shear deformation capabilities. Recall that this formulation
also accounts for large deformation and large rotation. The geo-
metry represents half of the representative structure described in

Fig. 13. Decrease in amplitude in the simulations using 2D beam elements without
shear deformation.
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Fig. 2 and the loading is shown in Fig. 14. The kinetic energy plots
show that there is an increase in the kinetic energy when the mesh
is refined (Fig. 19) for this case as well. Therefore, we can conclude
that the dependency of the kinetic energy on the mesh refinement
is a feature of the 2D beam with shear elements and not necessar-
ily induced by the type of the problem (e.g., snap-through).

5. Conclusions

This paper analyzes the performance of several finite element
formulations (2D and 3D) and the stability of the time-stepping
schemes in simulating a curved beam undergoing snap-through
by identifying the important features that affect the numerical

(a) (b)

Fig. 16. Total energy vs. time; Newmark method (a) 2D beam with no shear (Dt = 5 ! 10"5 s), (b) 3D solid quadratic (Dt = 10"4 s).

(a) (b)

Fig. 17. Total energy vs. time; 3D solid quadratic; conserving B method (a) Dt = 10"3 s, (b) Dt = 10"4 s.
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Fig. 18. Arch fixed at both ends; 2D beam with shear; Newmark method; Dt = 10"4 s; various meshes (a) total energy vs. time, (b) zoom in.
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accuracy and robustness and the region where the schemes are
stable for such simulations. We examine the interaction between
the two most important components of the finite element analysis
applied to structural dynamics problems: (1) the time-stepping
schemes and (2) the finite element formulations used to spatially
discretize the structure. The integrators studied are (1) the Newmark
method, (2) a conserving integrator (referred as conserving A)
[10–12], and (3) a composite integrator (referred as conserving
B) proposed by Bathe [13]. The finite element formulations used
are the 2D beam elements with and without shear deformation
capabilities and the 3D solid elements.

The study shows that the Newmark method and the conserving
A scheme have a restrictive bound on the size of the time step to
ensure numerical stability. The critical time step depends on the
finite element formulations used to discretize the structure and
on the loading pattern. Simulations performed using the
conserving B algorithm do not have this restriction. However the
numerical damping introduced by this algorithm increases with
the increase in the time step and greatly affects the accuracy of
the solution when large time steps are used.

The study also shows that the spatial and temporal discretiza-
tions may interact and such interactions may induce unwanted
numerical effects such as artificial damping, lack of energy conser-
vation, and most importantly, misleading numerical results that
seem to indicate a chaotic response when in fact the simulation
simply converged to non-physical solutions. These issues are very
severe when structural elements are used to discretize the beam
while the use of 3D solid elements has less severe effects. There-
fore, we recommend the use of 3D solid elements in solving
snap-through problems.

Due to the nonlinearity of the problem, the conservation of
energy is sometimes lost when structural elements (e.g., beams)
introduce kinematic assumptions in the discretization of the struc-
ture. The total energy is approximately conserved when 3D solid
quadratic elements are used with the Newmark method and
conserving A algorithm. When the conserving B algorithm is used,
the conservation of energy is not satisfied because numerical
damping is introduced to the system. The inspection of energy
plots for the analyses performed with beam formulation with shear
deformation also shows another numerical artifact: the kinetic
energy is mesh dependent (increases as the number of elements
increases; reducing the time step does not eliminate this unwanted
behavior).

In conclusion, we have shown that several of the currently
available finite element formulations are not robust or accurate
enough to simulate snap-through. In particular, assumptions

built into the formulation of structural elements (e.g., beam
elements) lead to unwanted numerical behavior that is often times
amplified by the presence of the snap-through phenomenon in the
system.
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